

BATTERY ENERGY STORAGE SYSTEM

AGENDA

Project Overview

Management Style

Task Decomposition

Milestones

Risks and Risk Management

Wrap up

PROJECT OVERVIEW

BATTERY ENERGY STORAGE SYSTEM

- Tasked by Burns and McDonnell to design a 25MW/100MWh Lithium-ion Battery energy storage system
- We are working with Doctor Zhaoyu Wang
- Project will include:
 - Site location and layout
 - One-line design
 - Equipment chosen (batteries, inverters, transformers, cables and more)
 - Technical documentation and Justifications

WATERFALL

- With there being so much concern for safety, cost and due to our inexperience with BESS we have a rigid schedule that is guided by our Burns and McDonnell counterparts
- They understand what we will be able to accomplish in a week's time and give us weekly tasks accordingly

TASK DECOMPOSITION

WHAT ARE WE DOING?

One-line drawing — Create an electrical schematic of the energy storage system

Technical Documentation — Write a report showing what we did with indepth reasoning and math

Implementation — Create an AutoCAD site drawing of the site and show how it will run after installed

WHAT WE'VE DONE SO FAR

- 1. Found a location
- 2. Chose batteries and inverters
- 3. Created AutoCAD site drawing
- 4. Created One-Line
- 5. Started on rough draft of technical documentation

We have many things left to do, including deciding on specific models for the fuses, breakers, cables, and much of the other equipment.

RISK

AND HOW IT'S MANAGED

RISK

Safety considerations

Minor environmental concerns

RISK MANAGEMENT

 Manage safety by following strict guidelines by governing organizations

 Contain the environmental concerns by isolating then in their own containers

