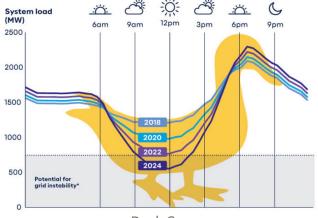
Utility Scale Lithium-ion Energy Storage System

SDDEC24-18

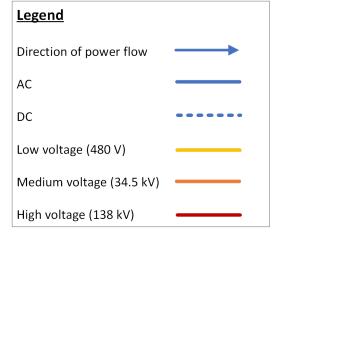
Oksana Grudanov, Sarah Ebert, James Mendenhall, Cole Dustin

Faculty Advisor: Dr. Zhaoyu Wang Client: Matt Pfeiffer Team Website: <u>https://sddec24-18.sd.ece.iastate.edu/</u>

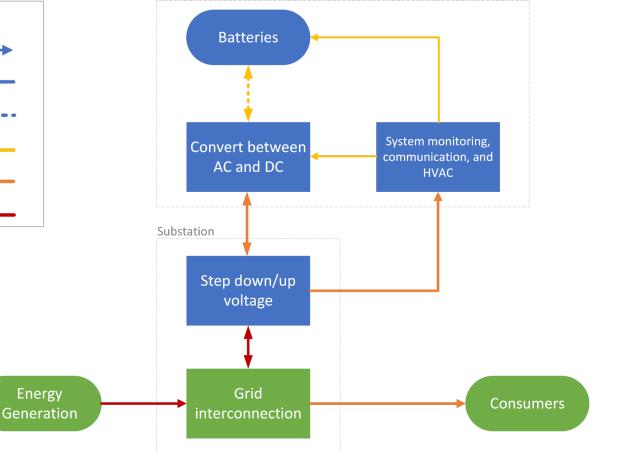

Problem Statement

There are uncertainties with renewable energy generation

that we cannot control.


The problem: There is a mismatch between peak energy demand and peak energy generation.

The Solution: To store excess energy in battery containers and release it when demand increases.



Duck Curve

IOWA STATE UNIVERSITY

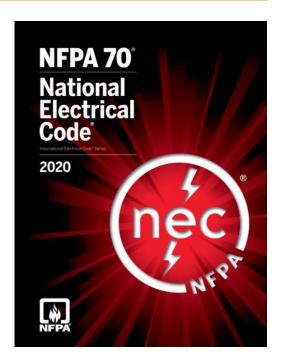
Energy Storage System

IOWA STATE UNIVERSITY

Project Requirements

Functional Requirements

- > Deliver 25 MW of power for 4 hours
 (100 MWh)
- > Overbuild 10% BOL (Beginning of life)
- > The system must be expandable to handle future needs



Battery Energy Storage System (BESS)

IOWA STATE UNIVERSITY

Non-functional Requirements

- > On-site road dimensions
- > Environmentally friendly components
- > Components must function in our site's climate
- > NEC (National Electric Code) 2020 standards
- > Article 300, 310, 311

IOWA STATE UNIVERSITY

Non-technical Requirements

- > Site location in Midwest
- > 15 acres of land
- > Near a distribution substation

IOWA STATE UNIVERSITY

Project Milestones

By December, we will have a 30% design for our BESS.

This semester

- > Major equipment models
- > Site layout
- > One-line
- > Cable sizing

Next semester

- > Design system in ETAP
- > Short circuit analysis
- > Load flow analysis
- > Cable thermal analysis

IOWA STATE UNIVERSITY

BESS Subsystems

Battery Containers

Manufacturer	BYD
Capacity	4946 KWH
Discharge C-rate	0.25 C
Output Voltage	1081 - 1497 V
Ambient Temp Rating	-30° to 55° C

IOWA STATE UNIVERSITY

Power Conversion System (PCS)

Manufacturer	Gamesa	
AC Output Power	4607 KVA	
DC Input Voltage	1075 – 1500 V	
AC Output Voltage	User defined	
Ambient Temp Rating	-20° to 60° C	

IOWA STATE UNIVERSITY

Auxiliary Power System

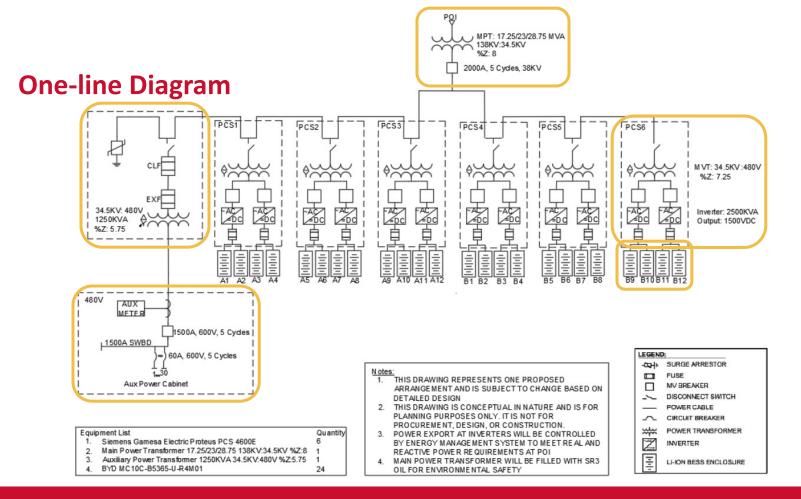
- > Powers cooling system in batteries and inverters
- > System monitoring and communication

Main system components:

- > Transformer
- > Switchboards
- > Breakers and aux power cabinet

Switchboard

IOWA STATE UNIVERSITY



Site Layout

- > Installation manuals for battery container and PCS
- > Road width and turn radii
- > Industry standards

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

Cable Schedule

>

>

>

>

	Cable ID	Current now	From	10	Description
	1	20.92 A	Surge Arrestor	PCS1	Fuse/ Surge Arrestor
Cable ID	2	103.66A	PCS1	PCS2	PCS1
Cable ID	3	186.39A	PCS2	PCS3	PCS2
	4	269.13A	PCS3	Substation Breaker	PCS3
	5	258.67A	Substaion Breaker	Substation Breaker	Home run 1
Current Flow	6	258.67A	Substation Breaker	PCS4	Home run 2
Current How	7	248.21A	PCS4	PCS5	PCS4
	8	165.47A	PCS5	PCS6	PCS5
- /.	9	82.74A	PCS6	PCS6	PCS6
From/to	10	1274A	Inverter	Battery B12	DC Battery B12
	11	1274A	Inverter	Battery B11	DC Battery B11
	12	1274A	Inverter	Battery B10	DC Battery B10
Deceription	13	1274A	Inverter	Battery B09	DC Battery B09
Description	14	1274A	Inverter	Battery B08	DC Battery B08
•	15	1274A	Inverter	Battery B07	DC Battery B07
	16	1274A	Inverter	Battery B06	DC Battery B06
Conductor Size	17	1274A	Inverter	Battery B05	DC Battery B05
	18	1274A	Inverter	Battery B04	DC Battery B04
	19	1274A	Inverter	Battery B03	DC battery B03
	20	1274A	Inverter	Battery B02	DC Battery B02
Cable Length	21	1274A	Inverter	Battery B01	DC Battery B01
	22	1274A	Inverter	Battery A12	DC Battery A12
	23	1274A	Inverter	Battery A11	DC Battery A11
Conductors por phase	24	1274A	Inverter	Battery A10	DC Battery A10
Conductors per phase	25	1274A	Inverter	Battery A09	DC Battery A09
1 1		1274A	Inverter	Battery A08	DC Battery A08
		1274A	Inverter	Battery A07	DC Battery A07
Quantity		1274A	Inverter	Battery A06	DC Battery A06
Quantity		1274A	Inverter	Battery A05	DC Battery A05
		1274A	Inverter	Battery A04	DC Battery A04
		1274A	Inverter	Battery A03	DC Battery A03
Raceway Length		1274A	Inverter	Battery A02	DC Battery A02
		1274A	Inverter	Battery A01	DC Battery A01
	34	1820A	Aux Transformer	Aux Equipment pad	Auxilary Equipment pad

Cable ID Current flow

From

Description

Conductor Size

6 AWG

4 AWG

1/0 Kcmil

4/0 Kcmil

4/0 Kcmil

4/0 Kcmil

4/0 Kcmil

1 AWG

6 AWG

500 Kcmil

1000 Kcmil

Length

45.57 ft

53.02 ft

53.02 ft

53.02ft

572.05 ft

563.99 ft

53.02 ft

53.02 ft

53.02 ft

30.86 ft

74.19 ft

72.62 ft

24.03 ft

40 ft

Conductors per phase Qty

Raceway Length

3 29.57 ft

3 37.02 ft

3 37.02 ft

3 37.02 ft

3 556.05 ft

3 547.99 ft

3 37.02 ft

3 37.02 ft

3 37.02 ft

4 16.86 ft

4 60.19 ft

4 58.62 ft

4 10.03 ft

4 16.86 ft

4 60.19 ft

4 58.62 ft

4 10.03 ft

4 16.86 ft

4 60.19 ft

4 58.62 ft

4 10.03 ft

4 16.86 ft

4 60.19 ft

4 58.62 ft

4 10.03 ft

4 16.86 ft

4 60.19 ft

4 58.62 ft

4 10.03 ft

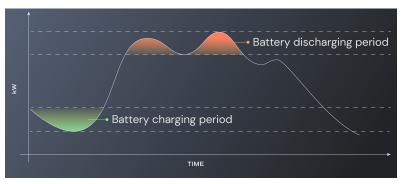
4 16.86 ft

4 60.19 ft

4 58.62 ft

4 10.03 ft

1 24 ft


IOWA STATE UNIVERSITY

Market and Users

Market Research and Demand

- > Allows for renewable energy integration
- > Improves grid reliability
- > Peak shaving
- > Back-up power
- > Very expensive

IOWA STATE UNIVERSITY

Users

The residents of Ames

> Grid reliability, environmental, and financial concerns

The construction and maintenance teams

> Work on a well-organized, safe, and efficient site

The local utility

> Easily monitor the power it is drawing and generating

IOWA STATE UNIVERSITY

Risks and Mitigation

Risk	Mitigation	
Calculations for number of batteries, inverters, and cable sizing may not be completely accurate.	Review calculations step by step with the team at Burns & McDonnell and our faculty advisor.	
Drawings made for the site layout and one line diagram may not follow National Electric Code (NEC).	 Research concepts online Review NEC documents and installation manuals Receive feedback from Burns & McDonnell 	

Role: Team Leader

> Responsible for keeping team on task and providing reminders for upcoming deadlines

Tasks completed

- > Calculations to determine the number of batteries and inverters
- > Researched the battery installation manual to determine battery spacings for site layout
- > Calculated cable ampacities and determining the conductor size by reviewing the NEC
- > Cable schedule report
- > Cable sizing report for client

Role: Organizer

> Responsible for revising and finalizing all our reports and documents

Tasks Completed

- > Comparison of specs for battery and inverter technologies
- > Calculations for one-line diagram
- > Sketch of one-line diagram
- > Technical documentation for one-line diagram

IOWA STATE UNIVERSITY

Role: Documenter

> Responsible for submission of our reports and creation of notes for clients

Tasks Completed

- > Comparison of specs for battery technologies
- > Completed of one-line diagram design in AutoCAD
- > Technical documentation for one-line diagram
- > Technical documentation for equipment selection

IOWA STATE UNIVERSITY

Responsibilities and Contributions - Cole

Role: Communications Lead

> Scheduled meetings and talked with the client

Tasks Completed

- > Organized and set up Microsoft Teams for meeting with the client
- > Created site layout in AutoCAD
- > Sized cable lengths in AutoCAD site layout
- > Technical documentation for site layout

IOWA STATE UNIVERSITY

Plan for Next Semester

Run tests and simulations

- > Integrate system into ETAP software
- > Short-circuit analysis
- > Load flow analysis
- > Cable Thermal Analysis

These tests will be used to determine the overall safety and reliability of the system

After completing simulations

- > Resize conductors after depending on results from short-circuit analysis
- > Add communication and grounding cables

IOWA STATE UNIVERSITY

