Arc Flash and Short Circuit Studies

Technical Documentation for Ames BESS

Iowa State Senior Design Team: SDDEC24-18

Members: Cole Dustin, Sarah Ebert, Oksana Grundanov, James Mendenhall

Authors: Sarah Ebert, Cole Dustin

Table of Contents

Executive Summary3
Standards4
Methodology4
Short Circuit Analysis4
Arc Flash Analysis5
Time Current Curve (TCC) Graph Analysis5
System Data5
Assumptions6
Study Cases
Results7
Short Circuit Studies7
Arc Flash Studies8
TCC Graph Analysis9
Recommendations
Conclusion11
Appendix12
Appendix A: Study Cases Settings:12
Appendix B: Short circuit results24
Appendix C: Arc Flash Results34
Appendix D: One-line diagram from AutoCAD39
Appendix E: Input Data41
Appendix F: TCC Graphs44

Executive Summary

To validate the choices made in the initial design phase of the Ames Battery Energy Storage System (BESS), including protective device and equipment parameters, and to evaluate the safety of the system, we ran arc flash and short circuit studies using ETAP software. The system built in ETAP mirrored the one-line diagram of the system. The device parameters and cable sizes were selected based on the calculations from creating our one-line diagram and cable schedule. This model allowed us to test our system's performance under several worst-case scenario conditions.

Short circuit analysis examines how our system behaves during a fault, including line-to-line, lineto-ground, and three-phase faults. It determines the fault current levels throughout the system. These values are used to determine proper protective equipment. The fuses and breakers must be sized to handle the maximum fault current to prevent damage to equipment. Based on the results from this analysis, we can ensure that system components, including our fuses, breakers, cables, and equipment, can withstand and isolate faults.

An arc flash is a rapid release of energy due to an electrical fault, causing a high-temperature explosion that can severely damage equipment and pose serious safety risks to personnel. Compared with the short circuit study, arc flash analysis is focused on protecting personnel near the equipment rather than the equipment itself. It determines the arc flash boundary; the minimum safe distance personnel should maintain to avoid injury from an arc flash event. It also provides guidance on appropriate PPE for personnel working within the arc flash boundary. For a utility-scale BESS, this typically involves protective clothing, gloves, face shields, and other safety gear.

The protective devices in our system must be coordinated to operate effectively. Coordination means the protective device closest to the fault operates first, leaving upstream devices unaffected. This prevents unnecessary disconnection of the entire system and minimizes downtime. It may also reduce arc flash incident energy because the faults can be cleared faster. Time current curves (TCC) are used to visualize the coordination of a system graphically by representing the relationship between the operating time of a protective device and the magnitude of current passing through it. By analyzing the positions of the curves relative to one another, we can ensure that the downstream devices operate faster than the upstream devices.

The results of these tests indicate that our BESS meets the standards expected, considering the scope of our project. The short circuit tests show that the fault currents are well below the short circuit withstand ratings and the cable fault current ratings of the conductors. However, the arc flash tests show several parts of our system have a very high incident energy, well above 40 cal/cm². This is due to poor coordination of the protective devices. Due to time constraints, we did not go beyond a surface level analysis of the TCC curves. A more in-depth analysis of the protective device ratings would yield better results. Overall, while our BESS is clearly not construction-ready, these tests verify our design decisions and provide recommendations for future work.

Standards

AC Arc Flash - IEEE 1584-2018

This standard was used for the arc flash tests on the low voltage side of our system.

AC Arc Fault – High Voltage

This standard is built into the ETAP library and was used for the arc flash tests on the medium voltage side of our system.

Short circuit - ANSI/IEEE-C37 & UL 489

This standard is used for both low and medium voltage short circuit analysis.

Methodology

Short Circuit Analysis

In our short circuit analysis, we focused on 3 phase faults. We faulted the medium voltage buses (34.5 kV), and the low voltage buses (480 V and 760V) separately. To perform a short circuit analysis, we sized the transformers, cables, inverters, and batteries based on the work we did last semester. Setting up the short circuit study in ETAP involved configuring the settings for the test four cases. To do this we needed to edit the study case details and update the faulted buses, standards used, and pre-fault voltage. Details on the parameters used can be found in Appendix A.

We concluded whether our system passed the short circuit test cases by comparing the fault currents at each bus to a maximum value. Based on industry standards, the maximum allowable short circuit current is 25 kA for medium voltage buses and 65 kA for low voltage buses. We also found the maximum allowable short circuit currents for each of our medium voltage cables, including both home runs and the cables connecting the PCS skids. The equation for insulated aluminum conductors rated for 105° C continuous operation is given as follows:

Equation 1:
$$\left(\frac{I}{A}\right)^2 t = 0.0125 \log \left(\frac{T_2 + 228}{T_1 + 228}\right)$$

Where:

I = short circuit current (amperes) A = conductor area (circular mils) t = time of short circuit (seconds) - 0.25 seconds T_1 = maximum operating temperature - 105° C T_2 = maximum short circuit temperature - 250° C

This equation can be used to find the minimum conductor for a given short circuit current or the maximum short circuit current a given conductor can withstand. We also used this equation to verify our cable sizing after completing the short circuit studies.

Arc Flash Analysis

To run the arc flash study, we used the fault current values from short circuit analysis as inputs. It is also essential to have adequately sized fuses. The current limiting fuses are particularly important here because of their ability to rapidly interrupt fault currents and minimize incident energy levels. To set up arc fault study in ETAP, we needed to set up two high voltage cases, a 95% and 105% load, and two low voltage cases, a 95% and 105% load. These use different standards, so they are evaluated differently in the ETAP software. When setting up the cases we had to set the correct buses, arc flash method, standards, FCT (fuse clearing time), and pre-fault voltage. Details on the parameters used can be found in Appendix A.

The ETAP results include the incident energy, measured in calories per square centimeter (cal/cm^2) , and the arc flash boundary distance, the area within which PPE is required. We ran a 3-phase fault because this typically produces the highest fault current. Additionally, running analyses at two different power factors makes our testing more robust. The highest current, at the higher power factor, does not necessarily result in the highest incident energy. This is because incident energy also increases with the duration of the fault and is a product of I^2 t, which, depending on the settings and coordination of the fuses and breakers, may be faster at a higher current. With these four tests, we can ensure that we are analyzing the worst-case arc flash scenario.

Time Current Curve (TCC) Graph Analysis

These graphs display the amount of time it takes to activate a protective device depending on the amount of current flowing through them. They also show similar curves for the time and current that cables and equipment can withstand before being damaged. By selecting several devices in series on the ETAP model, we can generate a graph containing all their time current curves.

To evaluate the coordination of our equipment using these graphs, we compared the positions of the curves for the protective devices relative to the damage curves for equipment they protect. The graphs axes are on a logarithmic scale and are read from bottom to top and left to right. The curves of the protective devices should be to the left of and below the curves of the equipment they protect to ensure they are activated before the equipment is damaged by the fault.

System Data

The input data for our system in ETAP was obtained from

- One line diagram (Appendix D)
- Cable schedule (Appendix E)
- Short circuit results from ETAP (Appendix B)
- Arc flash results from ETAP (Appendix C)

Assumptions

Protective device libraries: used to choose the types of fuses and breakers

Parameters	Utility Max Contribution (Case 1)	Utility Min Contribution N-1 (Case 2)
3Ф Fault (kA)	20.874	20.874
3Φ X/R (kA)	7.97	7.97
SLG Fault (kA)	21.878	21.878
SLG X/R (kA)	8.99	8.99
%R	0.49904	0.49904
%X	3.97734	3.97734
MPT Impedance	8%	13%

Utility data: the power and voltage levels at the point of interconnection was assumed to be

Human reaction time: 2 seconds according to IEEE 1584

Study Cases

For both the arc flash and short circuit studies, we ran four separate cases. We did this to supersede the maximum and minimum voltages and simulate all worst-case scenarios. This was necessary because when voltage is higher there is more energy in the system, which can cause damage to equipment or people. When the voltage is low there is a slower tripping time for fuses, leaving more time for the fault to go unnoticed and cause damage to equipment or people.

MV 1.05: performed on the 34.5 kV buses and uses the high voltage AC arc fault and ANSI/IEEE-C37 & UL 489 standards

MV 0.95: performed on the 34.5 kV buses and uses the high voltage AC arc fault and ANSI/IEEE-C37 & UL 489 standards

LV 1.05: performed on the 480 and 760 V buses and uses the IEEE 1584-2018 and ANSI/IEEE-C37 & UL 489 standards

LV 0.95: performed on the 480 and 760 V buses and uses the IEEE 1584-2018 and ANSI/IEEE-C37 & UL 489 standards

Results

Short Circuit Studies

Table 1 shows the three phase, line-to-ground, and line-to-line fault currents and the short circuit withstand ratings for each category of bus in our system. Table 2 shows the worst-case fault current withstand ratings for the medium voltage cables in our system. The cable fault current withstand rating was calculated using equation 1. Detailed results can be found in Appendix B.

Equipment (1.05 PF)	3-Phase (kA)	L-G (kA)	L-L-G (kA)	SC Withstand Ratings (kA)		
Home Run Bus (34.5 kV)	5.744	5.897	5.061	25		
PCS Skid High Side Terminals (34.5 kV)	5.682	5.797	4.986	25		
PCS Skid Low Side Terminals (760 V)	47.071	49.715	41.256	65		
Aux Power System High Side Terminal (34.5 kV)	5.662	5.784	4.979	25		
Aux Power System Low Side Terminal (480 V)	28.604	28.995	24.772	65		

Worst case MV Cable ID	Conductor Size	Clearing Time (cycles)	Calculated Cable Fault Current Rating (kA)	System 3P Fault (kA)
Homerun (Cable ID:4)	350 KCMil	15	31.01	5.74
PCS 1-2 (Cable ID: 2)	1/0 AWG	15	9.39	5.67

The results from the short circuit studies indicate that our system is properly protected in the event of a fault. The short circuit current values for buses in our system are below the industry standard withstand ratings, as seen in table 1 above. The medium voltage bus fault currents were around 5-6 kA, compared to the maximum rating of 25kA. The 760 V bus fault currents were at most 49.7 kA, and the 480 V bus currents were at most 28.9 kA. Both of these values are lower that the maximum rating of 65 kA as well.

The results were also below the calculated cable fault current ratings, as seen in table 2. The three phase fault current in the 350 KCMil home run cable was 5.74 kA, below the fault current rating of 31.01 kA. Additionally, the smallest cable connecting the PCS skids, at 1/0 AWG, had a three-phase fault current of 5.67 kA, below its fault current rating of 9.39 kA.

Arc Flash Studies

Table 3 and 4 show the duration of the arc faults, the incident energy, and the recommended working distance for the worst case of each bus voltage in our system. Detailed results for every bus in our system can be found in Appendix C.

Arc Flash Fault Locations (1.05 PF)	Voltage	Bus I _a (kA)	Duration (cycles)	Working Distance (in)	Incident Energy (cal/cm ²)
MV Buses 1.05 PF	34.5 kV	5.738 kA	120*	15	220.6
LV Buses 1.05 PF	760 V	47.071	120*	18	38
LV Buses 1.05 PF	480 V	26.945	1.8	18	1.3

Table 3: Worst Case 3-Phase AC Arc Flash Results at 1.05 PF

Table 3: Worst Case 3-Phase AC Arc Flash Results at 0.95 PF

Arc Flash Fault Locations (0.95 PF)	Voltage	Bus I _a (kA)	Duration (cycles)	Working Distance (in)	Incident Energy (cal/cm ²)
MV Buses 0.95 PF	34.5 kV	5.16	120*	15	197.5
LV Buses 0.95 PF	760 V	38.2	120*	18	42.8
LV Buses 0.95 PF	480 V	22.8	1.8	18	13.5

*Arc flash durations over the human reaction time of 2 seconds (120 cycles) are not considered as in IEEE 1584

The results from the arc flash studies reveal very high incident energies, greater than 40 cal/cm², in some parts of the system. This means that these sections must be de-energized before performing maintenance on them. The buses with the highest incident energies (MV Buses 1.05 PF) are the points where our PCS skids connect on the medium voltage side.

The AUX power system low voltage buses have incident energy ratings well below 40 cal/cm², meaning they are safe to work on while energized, with proper PPE and safety precautions.

TCC Graph Analysis

These graphs show the time current curves for fuses, breakers, cables, transformers, and other devices with current on the x-axis and time on the y-axis. Both axes are logarithmically scaled. More details on these graphs can be found in Appendix F.

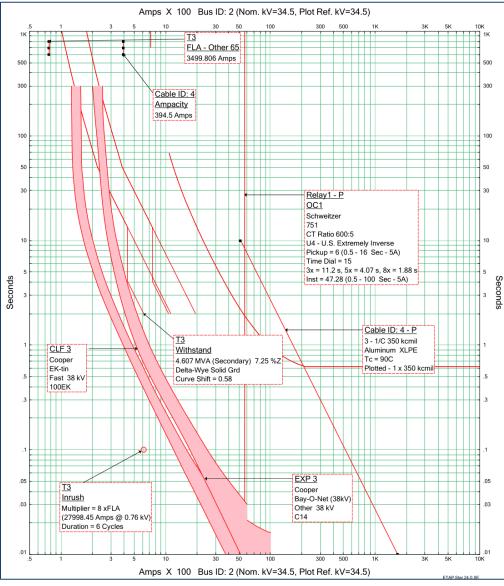


Figure 1: HR to PCS TCC Graph

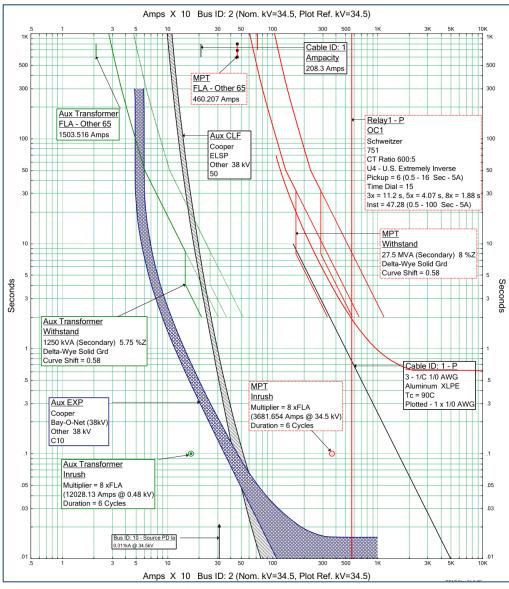


Figure 2: AUX Pad TCC Graph

The graphs show the limits breakers and fuses as thick lines because they take time to fully trigger. The thin curves correspond to the equipment that needs to be protected. In a well coordinated system, these lines should be fully above and to the right of the thicker lines corresponding to the protective devices.

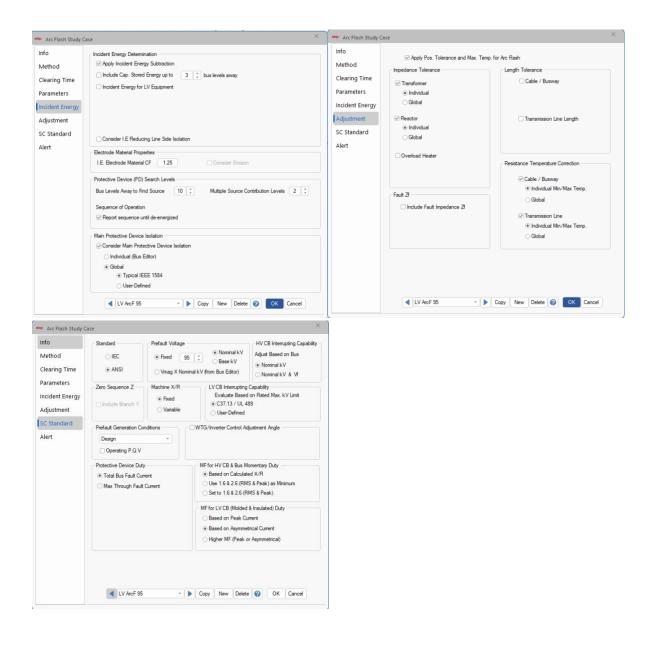
Initially, the TCC graphs revealed several weaknesses in our system. Resizing certain fuses and breakers based on which curves were right of the equipment curves improved coordination. However, there are still some contingencies that our system is not prepared for. This can be seen in the top left part of both graphs, where the damage curves for the AUX transformer (figure 2) and PCS transformer (figure 1) are left of the fuse and breaker curves. However, further analysis of the graphs was out of the scope of our project.

Recommendations

Further work is needed related to the device coordination and arc flash studies for this battery energy storage system. This work should consist of a more in death analysis of the TTCs of the fuses and breakers, and then performing additional arc flash studies. Additionally, a load flow study should be performed to analyze the voltage drop and current flow profile. This study would also confirm whether our system meets power requirements at the POI.

Conclusion


The tests described in this report simulated worst-case real-world scenarios to evaluate the safety and reliability of the BESS. The results of our tests indicate that our system meets the standards expected, considering the scope of our project.


The short circuit tests show that the fault currents are well below the short circuit withstand ratings and the cable fault current ratings of the conductors. However, the arc flash tests show several parts of our system have a very high incident energy, well above 40 cal/cm². The parts of our system with an incident energy greater than 40 cal/cm² need to be completely deenergized before performing maintenance on them, according to IEEE 1584. This is not ideal for the reliability of our BESS. The results from the TCC graphs show poor coordination of the protective devices. Due to time constraints, we did not go beyond a surface level analysis of the TCC curves. A more in-depth analysis of the protective device ratings would improve device coordination and decrease incident energies.

Appendix

Appendix A: Study Cases Settings: Arc Flash Study ETAP Settings

Arc Flash Low Voltage 95%

Arc Flash Low Voltage 105%

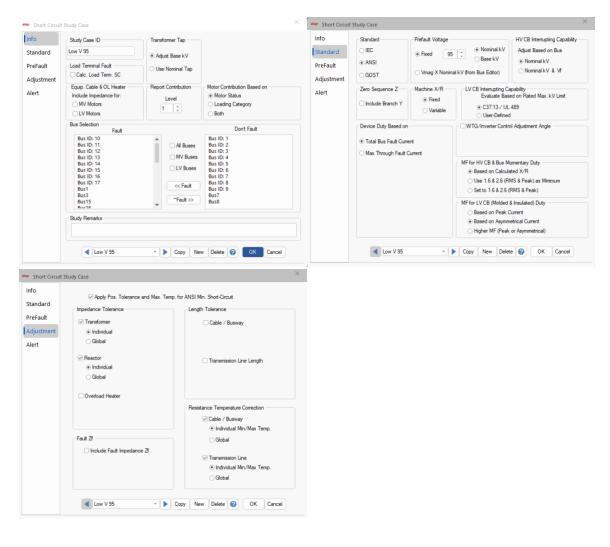
Info	0.1.0.15	T (T		Infe			
	Study Case ID	Transformer Tap		Info	Arc-Flash Method / Regional Settings Arc-Flash Method	SC Standard	Shock Risk Assesment
Method	LV ArcF 105	Adjust Base kV		Method	Arc-Flash Method IEEE 1584-2018	SC Standard	Shock Risk Assesment Approach Boundaries
Clearing Time	Load Terminal Fault			Clearing Time	O DGUV-I 203-077	OIEC	NFPA 70E 2024
Parameters	Calc. Load Tem. SC	O Use Nominal Tap		Parameters	O ENA NENS 09 (Sweeting)	ANSI	Voltage-Rated Gloves
	Equip. Cable & OL Heater	Report Contribution	Motor Contribution Based on	Parameters	ArcFault ArcFault (Unbalanced Network)		ASTM D120-22
ncident Energy	Include Impedance for:	Level	Motor Status	Incident Energy			
djustment	MV Motors	1 ¢	Loading Category	Adjustment	Arc Current		
C Standard	LV Motors		⊖ Both	SC Standard	Apply larc variation <= 0.6 kV	✓ App	oly larc variation > 0.6 kV
	Bus Selection Fault Don't Fault Bus ID: 10 Bus ID: 12 Bus ID: 12 Bus ID: 12 Bus ID: 13 All Buses Bus ID: 23 Bus ID: 4 Bus ID: 16 Bus ID: 17 Bus ID: 16 Bus ID: 10: 5 Bus ID: 17 Bus ID: 17 Bus ID: 10: 5 Bus ID: 10: 5 Bus ID: 17 Bus ID: 16 Bus ID: 10: 5 Bus ID: 5 Bus I16 Bus 21 Creating and any			Bolted Fault Current			
lert			Alert	Botto Fault Current			
Arc Flash Study C fo fethod	ase Fault Clearing Time (FCT)			Arc Flash Study C	Tase		
		active Device (PD)		Method	Bus Gap & Working Distance		Arc Flash Boundary
learing Time	Auto Select Source Prote		e.	Method	Individual (Bus Editor)		Arc Rash Boundary • 1.2 cal/cm ²
	Auto Select Source Prote Consider ZSI	Consider Maintenance Mod	le	Method Clearing Time	and the second		
1000	Auto Select Source Prote Consider ZSI Except if PD is selected	☑ Consider Maintenance Mod ed in Bus / Enclosure Editor	e	Method	Individual (Bus Editor)		● 1.2 cal/cm ²
arameters	Auto Select Source Prote Consider ZSI Except if PD is selecte Uimt Maximum FCT	Consider Maintenance Mod ed in Bus / Enclosure Editor 2 Sec	6	Method Clearing Time	 Individual (Bus Editor) Global (Arc Flash Analysis Data) 		 1.2 cal/cm² User-Defined
rameters cident Energy	Auto Select Source Prote Consider ZSI Except if PD is selecte Uimt Maximum FCT	☑ Consider Maintenance Mod ed in Bus / Enclosure Editor	ie -	Method Clearing Time Parameters	 Individual (Bus Editor) Global (Arc Flash Analysis Data) 		1.2 cal/cm ² User-Defined Shock Risk Assessment
arameters cident Energy djustment	Auto Select Source Prote Consider ZSI Except if PD is selecte Uimt Maximum FCT	Consider Maintenance Mod ed in Bus / Enclosure Editor 2 Sec determined use max FCT	ie .	Method Clearing Time Parameters Incident Energy Adjustment	 Individual (Bus Editor) Global (Arc Flash Analysis Data) 		1.2 cal/cm ² User-Defined Shock Risk Assessment Shock Protection Boundaries
learing Time arameters ncident Energy ndjustment C Standard	Auto Select Source Prote Consider ZSI Except if PD is selecte Unit Maximum FCT I'f FCT cannot be d User-Defined from Bus / B	Consider Maintenance Mod ed in Bus / Enclosure Editor 2 Sec determined use max FCT	ie -	Method Clearing Time Parameters Incident Energy Adjustment SC Standard	 Individual (Bus Editor) Global (Arc Rash Analysis Data) 	Edit	1.2 cal/cm ² User-Defined Shock Risk Assessment
arameters icident Energy djustment	Auto Select Source Prote Consider ZSI Consider ZSI Except # PD is selecte Unit Maximum FCT If FCT cannot be d User-Defined from Bus / I PD Delays and Tolerances Fuse Clearing Time Tolera Overcurrent Relay Trip Ti Lockout Relay Delay Relay Minimum Trip Fuse Clearing time Options	Consider Maintenance Mod ed in Bus / Enclosure Editor 2 Sec determined use max FCT Enclosure Editor ance 0 % ime Tolerance 0 % 0 sec	rc cles	Method Clearing Time Parameters Incident Energy Adjustment	Individual (Bus Editor) Global (Arc Rash Analysis Data) E Incident Energy Levels NFPA 70E 2024 / Z452 2024 / User	Edit	1.2 cal/cm ² User-Defined Shock Risk Assessment Shock Protection Boundaries

Marc Flash Study C	ase		>	Arc Flash Study C	ase	
Arc Flash Study C Info Method Clearing Time Parameters Incident Energy Adjustment SC Standard	ase Incident Energy Detem Ø Apply Incident Ene Include Cap. Store Incident Energy fo	ergy Subtraction ed Energy up to 3	>	Arc Flash Study CC Info Method Clearing Time Parameters Incident Energy Adjustment SC Standard	ase Apply Pos. Tolerance and Max. Ter Impedance Tolerance Transformer Individual Global Peactor Individual	np. for Arc Pash Length Tolerance Cable / Busway
Alert	Consider LE Reducing Line Side Isolation Electrode Material CF 125 Consider Erosion Protective Device (PD) Search Levels Bus Levels Away to Find Source 10 Sequence of Operation Report sequence until de energized Main Protective Device Isolation		Alert	Global Overload Heater Fault Z Include Fault Impedance ZI	Resistance Temperature Correction	
Here Arc Flash Study C Info Method	 Individual (Bus Global Typical II User-Def LV ArcF 10 	EEE 1584 ined	Copy New Delete @ OK Cancel		 LV ArcF 105 	Copy New Delete Ø OK Cancel
Method Clearing Time Parameters Incident Energy Adjustment SC Standard Alert	ANSI Zero Sequence Z Include Branch Y Prefault Generation Cc Design Operating P.Q.V	Machine X/R	Control Adjustment Angle			
	Protective Device Dut Total Bus Fault Cu Max Through Fault Before Arc Rash	ment : Current	MF for HV CB & Bus Momentary Duty @ Based on Calculated V/R Use 1.6 & 2.6 (RMS & Peak) as Minimum S et to 1.5 & 2.6 (RMS & Peak) MF for LV CB (Molded & Insulated) Duty Based on Peak Current @ Based on Asymmetrical Current Higher MF (Peak or Asymmetrical)			
	Pun Device Duty Before Arc Rash		Based on Peak Current Based on Asymmetrical Current			

Arc Flash Medium Voltage 95%

Alert Das Seesual Fault Don't Fault Alert				
Method Indicate Sing				
Address family and the family and th				
arameters iddet Earry Place East of the optimized for the second index Standard left C Standard				
Act flash Study Care Adjustment Sala of Method Gild method 1 1 Sala of Method Method 1: Tenga Wodyn Adjustment Sala of Method 1 1 Sala of Method Method 1: Tenga Wodyn Adjustment Sala of Method 1 1 Sala of Method Method 1: Tenga Wodyn Adjustment Sala of Method 1 1 Sala of Method Method 1: Tenga Wodyn Adjustment Sala of Method 1 1 Sala of Method Method 1: Tenga Wodyn Adjustment Sala of Method 1 1 1 Method 1: Tenga Wodyn Adjustment Sala of Method 1 1 1 Method 1: Tenga Wodyn Adjustment Sala of Method 1 1 1 1 Method 1: Tenga Wodyn Method 1: T				
djutment C Standard lert C Standard Lett C Standard C Standard Lett C Standard Lett C Standard Lett C Standard Lett C Standard Lett C Standard Lett C Standard Lett C Standard Lett C Standard C Standa				
Standard et Standard et Standard et Standard et Standard et Standard et Standard Pat Selection Fat Pat Selectio				
Art Flash Steleton Alert Alert Bis Secton Bis Secton Bis ID 1 Bis ID 1 Bis ID 1 Bis ID 1 Bis ID 1 Bis ID 1 Bis ID 1 Bis ID 2 Bis ID 1 <				
Build 1	100000			
Built 2 all	0.001			
Built 0:5 IV Bases Built 0:15 Built 0:7 Built 0:16 Built 0:17 Built 0:7 Built 0:17 Built 0:17 Built 0:7 Built 0:7 Built 0:7 Built 0:7 Buil	0.001			
Bis (D: 5 Bur (D: 5 Bur (D: 5) Bur				
Build Die 9 Build Bu				
Image: Standard lert 90/16 Bu/21				
Build Build Bu				
Bu:23 Bu:33 Bu:23 Bu:33 Study Remarks Bu:000000000000000000000000000000000000				
Budy Remarks Uudate AF Results to Buses Budy Remarks Uudate AF Results to Buses Uudate AF Results to Buses Uudate af Results to Buses Uudate af Results to Buses Uudate af Results to Buses WIX AveF 55 Copy New Delete @ OK Cancel Arc Flash Study Case Info fo Info tethod Info learing Time Consider Martenance Mode arameters Consider Martenance Mode iccident Energy Global glustment C.Standard PD Delays and Tolerance S. Venumer Relay Tap Time Tolerance S. Overcurret Relay Tap Time Tolerance S. Overcurret Relay Tap Time Tolerance S. Relay Minimum Tip occles Relay Minimum Tip				
Study Hemates No Update Image: Study Kemates Image: Study Kemates Image: Study Kemates				
Arc Flash Study Case Info Arc Flash Study Case Info Arc Flash Study Case Info Gering Time arameters cident Energy djustment ett Fut Cearing Time (FCT) Info PD Belays and Tolerances Sec Fus Cearing Time Tolerance 1, PD Delays and Tolerances 1, Fus Cearing Time Tolerance 1, Cockout Relay Unit 0 sec Fus Cearing Time Tolerance 1, Fus Cearing Time Tolerance 1, Cockout Relay Delay 1 Fus Cearing Time Tolerance 1, Cockout Relay Delay 1 Fus Cearing Time Tolerance 1, Cockout Relay Delay 1 Fus Cearing Time Tolerance 1, Cockout Relay Delay 1 Sec 1				
Arc Flash Study Case Arc Flash Study Case Arc Flash Study Case For the Arc Sale Source Protective Device (PD) Protection Brune Editor Committee 25 Compared Maintenance Mode Clearing Time Compared PD is selected in Bia Editor Committee 25 Since Protective Device (PD) Committee 25 Si				
Arc Flash Study Case X Arc Flash Study Case fo Info Method learing Time Fault Cearing Time (FCT) Method arameters Consider ZSI Consider Martenance Mode Scoper # PD is selected in Bus Edtor Diatrone Global User-Defined flux Editor) FCT cannot be determined use max FCT Incident Energy Just Casing Time PD Delays and Tolerancee % Itert PD Delays and Tolerancee % User-Defined Sock Flak Assessment Stock Protection Bounday Learning Time Ovecument Relay Tipo Time Tolerance % User Defined Sock Flak Assessment Stock Protection Bounday Stock Relay Merinum Tip 1 cycles Alert Head Write Stock C2 2017 to 2023 User-Defined Bit //sprove PPE Global Voitage-Rated Glov % Stock Relay Merinum Tip cycles Fuse Clearing Time Tolerance % % Stock Relay Case Global Voitage-Rated Glov Keas Merinum Tip 1 cycles Stock Relay Case Stock Relay Case Stock Relay Case	O opuale il result la more conservative			
iearing Time Image: Consider ZSI Image: Consimage: Consimage: Consider ZSI Image: Consider ZSI Image				
earing Time Clearing Time <td></td>				
rrameters icident Energy ijustment : Standard ert PD Delays and Tolerance Fuse Clearing Time Tolerance O x Covercurrent Relay Trip Time Tolerance O x Covercurent Relay Trip Time Tolerance O x Covercurrent Relay Trip Time Tolerance O x Covercurrent Relay Trip Time Tolerance O x Covercurrent Relay Trip Time Tolerance C x Cover				
Image: Standard gent for the standard entry law of th				
C Standard C User-Defined from Bus Editor SC Standard SC Standard Ref Without Tools With Tools With Tools C Standard Alert Fuse Clearing Time Tolerance 0 1, Lockout Relay Minium Trip 1 cycles Edit/Approve PPE Global Voltage-Rated Global Vol				
ert PD Delays and Tolerances With Tools With Tools Userance With Tools Ovecurrent Relay Trip Time Tolerance 0 1, Lockout Relay Delay 0 sec Relay Minium Trip 1 cycles Global Votage Rated				
Fue Clearing Time Tolerance 0 %, Overcurrent Relay Tip Time Tolerance 0 %, Lockout Relay Delay 0 sec Relay Minimum Tip 1 cycles Fue Clearing time Options				
Overcurrert Relay Trip Time Tolerance 0 1, Lockout Relay Delay 0 sec Relay Minimum Trip 1 cycles				
Lockout Relay Delay 0 sec Edit/Approve PPE Global Votage-Rated Glov Relay Minimum Trip 1 cycles Global Votage-Rated Glov Fuse Clearing time Options				
Relay Minimum Trip 1 cycles Global Votage-Rated Glov Fuse Clearing time Options ASTM D120-22	daries .			
Fuse Clearing time Options				
Fuse Clearing time Options				
Fuse Clearing time Options	4,019,040,00			
C Determine CLE securities branch on Reals Let Through Coming	4,019,040,00			
Use smille CLF dys adult based on Feak Liter initiagil Curves	love Class			
Determine CLP operation based on Peak Let Hindogn Curves				

👐 Arc Flash Study Ca	ase	×	etep Arc Flash Study Ca	ase	×	
Info	Incident Energy Determination		Info	☑ Apply Pos. Tolerance and Max. Temp. for Arc Rash		
Method	Apply Incident Energy Subtraction		Method	Impedance Tolerance	Length Tolerance	
Clearing Time	Include Cap. Stored Energy up to	3 🗘 bus levels away	Clearing Time		Cable / Busway	
Parameters			Parameters	 Transformer Individual 		
				Global		
Incident Energy			Incident Energy	Clobal		
Adjustment			Adjustment	✓ Reactor	Transmission Line Length	
SC Standard			SC Standard	 Individual 		
Alert	Consider I.E Reducing Line Side Isola	ation	Alert) Global		
Alert	Electrode Material Properties		Alert	Overload Heater		
	I.E. Electrode Material CF 1.25	Consider Erosion			Resistance Temperature Correction	
	Protective Device (PD) Search Levels					
	Bus Levels Away to Find Source 10	Multiple Source Contribution Levels 2			 Cable / Busway Individual Min/Max Temp. 	
	Bus Levels Away to Find Source	Multiple Source Contribution Levels 2		Fault Zf		
	Sequence of Operation			Include Fault Impedance Zf	Global	
	Report sequence until de-energized				✓ Transmission Line	
					Individual Min/Max Temp.	
	Main Protective Device Isolation) Global	
	MV ArcF 95 -	Copy New Delete ? OK Cancel		MV ArcF 95 - >	Copy New Delete ? OK Cancel	
Han Arc Flash Study Ca		×				
1						
Info	Standard Prefault Voltag					
Method	O IEC	95 C Nominal kV Adjust Based on Bus				
Clearing Time	ANSI Mmag X M	Nominal K V				
Parameters		ominal kV (from Bus Editor) Nominal kV & Vf				
10000100000000000000000000000000000000	Zero Sequence Z Machine X/R	LV CB Interrupting Capability				
Incident Energy	Include Branch Y	Evaluate Based on Rated Max. kV Limit (© C37.13 / UL 489				
Adjustment	O Variable	User-Defined				
SC Standard						
Alert	Prefault Generation Conditions	WTG/Inverter Control Adjustment Angle				
Alert	Design *					
	Operating P.Q.V					
	Protective Device Duty	MF for HV CB & Bus Momentary Duty				
	Total Bus Fault Current	Based on Calculated X/R				
	O Max Through Fault Current	Use 1.6 & 2.6 (RMS & Peak) as Minimum				
		Set to 1.6 & 2.6 (RMS & Peak)				
		MF for LV CB (Molded & Insulated) Duty				
		Based on Peak Current				
		Based on Asymmetrical Current				
		 Higher MF (Peak or Asymmetrical) 				
	 MV ArcF 95 - 	Copy New Delete 🕜 OK Cancel				
			-			


Arc Flash Medium voltage 105%

Info Method Clearing Time Parameters Incident Energy Adjustment SC Standard Alert	Study Case ID MV ArcF 105 Load Terminal Fault Calc. Load Term. SC Equip. Cable & OL Heater Include Impedance for:	Transformer Tap • Adjust Base kV Use Nominal Tap		Info	Arc-Rash Method / Regional Settings			
learing Time arameters icident Energy djustment C Standard	Load Terminal Fault Calc. Load Term. SC Equip. Cable & OL Heater Include Impedance for:							
rameters cident Energy djustment C Standard	Calc. Load Term. SC Equip. Cable & OL Heater Include Impedance for:	O Use Nominal Tap		Method	Arc-Flash Method	SC Standard	Shock Risk Assesmen Approach Boundaries	t
cident Energy djustment C Standard	Equip. Cable & OL Heater Include Impedance for:	Use Nominal Tap		Clearing Time	O DGUV-I 203-077	OIEC	NFPA 70E 2024	
ident Energy ljustment Standard	Include Impedance for:			Parameters	 ENA NENS 09 (Sweeting) ArcFault 	ANSI	Voltage-Rated Gloves	
ljustment Standard		Report Contribution	Motor Contribution Based on		ArcFault O ArcFault (Unbalanced Network)		ASTM D120-22	
Standard		Level	 Motor Status 	Incident Energy	Solution Method			
	MV Motors LV Motors	1 0	Loading Category Both	Adjustment	oodaloin meanod			
ert	Bus Selection		Both	SC Standard	O Method 1 - Terzija/Koglin	Adv. Parameters	Max. Iteration	100000
	Fault		Don't Fault	Alert	O Method 1 - Terzija/Rogin	Aur. I dialifeteis	Max. Relation	100000
	Bus ID: 1 Bus ID: 2 Bus ID: 3 Bus ID: 4 Bus ID: 5	All Buses	Bus ID: 10 Bus ID: 11 Bus ID: 12 Bus ID: 13 Bus ID: 14		Method 2 - EPRI HVAC AF	Adv. Parameters	Precision	0.001
	Bus ID: 6 Bus ID: 7	MV Buses LV Buses	Bus ID: 15 Bus ID: 16		Fault Current			
	Bus ID: 8 Bus ID: 9	LV buses	Bus ID: 17 Bus1			ne-to-Ground		
	Bus7	<< Fault	Bus3			ne-to-Line		
	Bus8	~Fault >>	Bus15 Bus16		• 3-	Phase		
			Bus21 Bus22		1	-Phase to 3-Phase C	F 1	
			Bus23 Bus24					
			Bus33 *		Update AF Results to Buses			
	Study Remarks				Update			
					◯ No Update			
					O Update if Result is More Conserv	rative		
	MV ArcF 105	- Copy N	ew Delete ? OK Cancel		MV ArcF 105	• Copy	New Delete 🕜	OK Cancel
				34				
Arc Flash Study C	ase			× Arc Flash Study C	Tase			
				Arc Flash Study C				
fo	Fault Clearing Time (FCT)	ertice Device (PD)		Arc Flash Study C	Bus Gap & Working Distance		Arc Rash Boundary	
fo ethod	Fault Clearing Time (FCT) Auto Select Source Prot			Info Method	Bus Gap & Working Distance		Arc Rash Boundary	
fo lethod learing Time arameters	Fault Clearing Time (FCT) Auto Select Source Prot	Consider Maintenance Mod	le	Arc Flash Study C Info Method Clearing Time Parameters	Bus Gap & Working Distance Gaps User-Defined (Bus Ed @ Calculated Working O Individual			
fo ethod earing Time arameters	Fault Clearing Time (FCT) Auto Select Source Prot Consider ZSI Except if PD is select Umit Maximum FCT	Consider Maintenance Mod ed in Bus Editor	ie	Info Method Clearing Time	Bus Gap & Working Distance Gaps User-Defined (Bus Ed Calculated	itor) Edit	1.2 cal/cm ²	1
fo ethod earing Time arameters cident Energy	Fault Clearing Time (FCT) Auto Select Source Prot Consider ZSI Except if PD is select Unit Maximum FCT If FCT cannot be	Consider Maintenance Mod ed in Bus Editor 2 Sec determined use max FCT	ie	Arc Flash Study C Info Method Clearing Time Parameters	Bus Gap & Working Distance Gaps User-Defined (Bus Ed © Calculated Working Individual Distance @ Global	itor) Edit	1.2 cal/cm ² User-Defined	
fo ethod earing Time arameters cident Energy djustment	Fault Clearing Time (FCT) Auto Select Source Prot Consider ZSI Except if PD is select Umit Maximum FCT	Consider Maintenance Mod ed in Bus Editor 2 Sec determined use max FCT	ie	we ArcFlash Study C Info Method Clearing Time Parameters Incident Energy	Bus Gap & Working Distance Gaps User-Defined (Bus Ed @ Calculated Working Ondrvidual Distance @ Global @ Typical NESCC2 O User-Defined	itor) Edit	1.2 cal/cm ² User-Defined Shock Risk Assessment	
fo ethod earing Time arameters cident Energy djustment C Standard	Fault Clearing Time (FCT) Auto Select Source Prot Consider ZSI Except if PD is select Unit Maximum FCT If FCT cannot be	Consider Maintenance Mod ed in Bus Editor 2 Sec determined use max FCT	ie	www.ArcFlash Study C Info Method Clearing Time Parameters Incident Energy Adjustment SC Standard	Bus Gap & Working Distance Gaps User-Defmed (Bus Ed @ Calculated Working Individual Distance @ Global @ Typical NESC-C2 User-Defined	itor) Edit	1.2 cal/cm ² User-Defined Shock Risk Assessment Shock Protection Bou	
fo lethod eearing Time arameters cident Energy djustment C Standard	Fault Clearing Time (FCT) —	Consider Maintenance Moc ed in Bus Editor 2 Sec determined use max FCT ditor		www.ArcFlash Study C Info Method Clearing Time Parameters Incident Energy Adjustment	Bus Gap & Working Distance Gaps User-Defined (Bus Ed @ Calculated Working C Individual Distance @ Global ® Typical NESC.C2 User-Defined Mm. Approach Distance @ Witho	itor) Edit	1.2 cal/cm ² User-Defined Shock Risk Assessment Shock Protection Bou	
fo lethod eearing Time arameters cident Energy djustment C Standard	Fault Clearing Time (FCT) Auto Select Source Prot Consider ZSI Except if PD is select Unit Maximum FCT I FCT cannot be User-Defined from Bus E PD Delays and Tolerances Fuse Clearing Time Tole	Consider Maintenance Moo ed in Bus Editor 2 Sec determined use max FCT idtor		www.ArcFlash Study C Info Method Clearing Time Parameters Incident Energy Adjustment SC Standard	Bus Gap & Working Distance Gaps User-Defined (Bus Ed @ Calculated Working Individual Distance @ Global @ Typical NESC-C2 User-Defined Min. Approach Distance @ Within Incident Energy Levels	itor) Edit 2017 to 2023 ut Tools Tools	1.2 cal/cm ² User-Defined Shock Risk Assessment Shock Protection Bou	
fo lethod learing Time arameters ucident Energy djustment C Standard	Fault Clearing Time (FCT) Auto Select Source Prot Consider ZSI Except if PD is select Unit Maximum FCT I FCT cannot be User-Defined from Bus E PD Delays and Tolerances Fuse Clearing Time Tole Overcurrent Relay Trp Ti	Consider Maritenance Moo ed in Bus Editor 2 Sec determined use max FCT ditor ance 0 % me Tolerance 0 %		www.ArcFlash Study C Info Method Clearing Time Parameters Incident Energy Adjustment SC Standard	Bus Gap & Working Distance Gaps User-Defined (Bus Ed @ Calculated Working C Individual Distance @ Global ® Typical NESC.C2 User-Defined Mm. Approach Distance @ Witho	itor) Edit 2017 to 2023 ut Tools Tools	1.2 cal/cm ² User-Defined Shock Risk Assessment Shock Protection Bou	
fo lethod eearing Time arameters cident Energy djustment C Standard	Fault Clearing Time (FCT) Auto Select Source Prot Consider ZSI Except if PD is select Unit Maximum FCT I FCT cannot be User-Defined from Bus E PD Delays and Tolerances Fuse Clearing Time Tole	Consider Maritenance Moo ed in Bus Editor 2 Sec determined use max FCT ditor rance 0 2, Time Tolerance 0 3, 0 se		www.ArcFlash Study C Info Method Clearing Time Parameters Incident Energy Adjustment SC Standard	Bus Gap & Working Distance Gaps User-Defined (Bus Ed @ Calculated Working Ondvidual Distance @ Global @ Typical NESC C2 User-Defined Mn. Approach Distance @ With Incident Energy Levels NESC C2:2017/to 2023 / User-Defined	itor) Edit 2017 to 2023 ut Tools Tools	1.2 cal/cm ² User-Defined Shock Risk Assessment Shock Risk Assessment Shock Protection Bou NFPA 70E 2024	ndaries
fo lethod eearing Time arameters cident Energy djustment C Standard	Fault Clearing Time (FCT) ● Auto Select Source Prot ⊘ Consider ZSI ○ Lincept # PD is select ⊘ Lint Maximum FCT ⊘ # FCT cannot be ○ User-Defined from Bus E PD Delays and Tolerances Fuse Clearing Time Tole Overcurrent Relay Trp 1 Lockout Relay Delay Relay Minimum Trp	Consider Maritenance Moo ed in Bus Editor 2 Sec determined use max FCT ditor rance 0 2, Time Tolerance 0 3, 0 se	ec.	www.ArcFlash Study C Info Method Clearing Time Parameters Incident Energy Adjustment SC Standard	Bus Gap & Working Distance Gaps User-Defined (Bus Ed @ Calculated Working Ondvidual Distance @ Global @ Typical NESC C2 User-Defined Mn. Approach Distance @ With Incident Energy Levels NESC C2:2017/to 2023 / User-Defined	itor) Edit 2017 to 2023 ut Tools fined	1.2 cal/cm ² User-Defined Shock Risk Assessment Shock Protection Bou NFPA 70E 2024 Global Voltage-Rated	ndaries
fo lethod learing Time arameters cident Energy djustment C Standard	Fault Clearing Time (FCT) Auto Select Source Prot Consider ZSI Except # PD is select Unit Maximum FCT # FCT cannot be User-Defined from Bus E FUD Delays and Tolerances Fuse Clearing Time Tole Overcurrent Relay Tip 1 Lockout Relay Delay	Consider Maritenance Moo ed in Bus Editor 2 Sec determined use max FCT ditor rance 0 2, Time Tolerance 0 3, 0 se	ec.	www.ArcFlash Study C Info Method Clearing Time Parameters Incident Energy Adjustment SC Standard	Bus Gap & Working Distance Gaps User-Defined (Bus Ed @ Calculated Working Ondvidual Distance @ Global @ Typical NESC C2 User-Defined Mn. Approach Distance @ With Incident Energy Levels NESC C2:2017/to 2023 / User-Defined	itor) Edit 2017 to 2023 ut Tools fined	1.2 cal/cm ² User-Defined Shock Risk Assessment Shock Risk Assessment Shock Protection Bou NFPA 70E 2024	ndaries
Arc Flash Study C afo Method learing Time arameters hcident Energy djustment C Standard Jert	Fault Clearing Time (FCT) ● Auto Select Source Prot ○ Consider ZSI ○ Lincept # PD is select ○ Lint Maximum FCT ○ If FCT cannot be ○ User-Defined from Bus E PD Delays and Tolerances Fuse Clearing Time Tole Overcurrent Relay Trp 1 Lockout Relay Delay Relay Minimum Trp Fuse Clearing time Options	Consider Maritenance Moo ed in Bus Editor 2 Sec determined use max FCT ditor rance 0 2, Time Tolerance 0 3, 0 se	sc roles	www.ArcFlash Study C Info Method Clearing Time Parameters Incident Energy Adjustment SC Standard	Bus Gap & Working Distance Gaps User-Defined (Bus Ed @ Calculated Working Ondvidual Distance @ Global @ Typical NESC C2 User-Defined Mn. Approach Distance @ With Incident Energy Levels NESC C2:2017/to 2023 / User-Defined	itor) Edit 2017 to 2023 ut Tools fined	1.2 cal/cm ² User-Defined Shock Risk Assessment Shock Protection Bou NFPA 70E 2024 Global Voltage-Rated	ndaries

👐 Arc Flash Study Ca	ase		×	etter Arc Flash Study Ca	ase	×
Info	Incident Energy Determ	ination		Info	_	
Method	Apply Incident Ene	rgy Subtraction		Method	Apply Pos. Tolerance and Max. Temp	
Clearing Time	Include Cap. Store	d Energy up to 3	tus levels away	Clearing Time	Impedance Tolerance	Length Tolerance
Parameters				-	✓ Transformer	Cable / Busway
				Parameters	 Individual Global 	
Incident Energy				Incident Energy	Giobal	
Adjustment				Adjustment	✓ Reactor	Transmission Line Length
SC Standard	Consider E Bedu	cing Line Side Isolation		SC Standard	Individual Global	
Alert				Alert	Giobal	
	Electrode Material Prop I.E. Electrode Materia		Consider Erosion		Overload Heater	
	T.E. Decircue materia	1.25				Resistance Temperature Correction
	Protective Device (PD)					Cable / Busway
	Bus Levels Away to Fi	ind Source 10 🗘	Multiple Source Contribution Levels 2		Fault Zf	Individual Min/Max Temp.
	Sequence of Operatio	n			Include Fault Impedance Zf	⊖ Global
	Report sequence u					✓ Transmission Line
						Individual Min/Max Temp.
	Main Protective Device	e Isolation				Global
	MV ArcF 10	5 • 🕨	Copy New Delete ? OK Cancel		 MV ArcF 105 * 	Copy New Delete ? OK Cancel
			×			
May Arc Flash Study Ca	ase					
Info	Standard	Prefault Voltage	HV CB Interrupting Capability			
Method	OIEC	Fixed 105	Nominal kV Adjust Based on Bus Base kV			
Clearing Time	ANSI	O Vmag X Nominal	Nominal kV			
Parameters			O Nominal KV & VI			
Incident Energy	Zero Sequence Z	Machine X/R	LV CB Interrupting Capability Evaluate Based on Rated Max, kV Limit			
1000 C C C C C C C C C C C C C C C C C C	(_) Include Branch Y	Fixed Variable	© C37.13 / UL 489			
Adjustment		Vanable	O User-Defined			
SC Standard	Prefault Generation Co	ndtions	VTG/Inverter Control Adjustment Angle			
Alert	Design	•				
	Operating P.Q.V					
	Protective Device Duty		MF for HV CB & Bus Momentary Duty			
	Total Bus Fault Cun		Based on Calculated X/R			
	O Max Through Fault	Current	O Use 1.6 & 2.6 (RMS & Peak) as Minimum			
			Set to 1.6 & 2.6 (RMS & Peak)			
			MF for LV CB (Molded & Insulated) Duty			
			 Based on Peak Current 			
			Based on Asymmetrical Current			
			 Higher MF (Peak or Asymmetrical) 			
	MV ArcF 10	5 - 1	Copy New Delete 🕜 OK Cancel			
C				9		

Short Circuit Study ETAP Setting

Short Circuit Low Voltage 95%

Short Circuit LV 105%

etap Short Circui	t Study Case			etap Short Circuit	Study Case			
Info Standard PreFault Adjustment Alert	Study Case ID Low V 105 Calo: Load Terminal Fault Calo: Load Term. SC Equip: Calob Exter Include Impedance for: INV Motors	Level O Los	Contribution Based on or Status ding Category	Info Standard PreFault Adjustment Alert	Standard IEC @ ANSI @ GOST Zero Sequence Z Include Branch Y		Nominal kV Base kV Base kV LV CB Interrupting C Evaluate Bas © C37.13 / UL	ed on Rated Max. kV Limit
	LV Motors Bus Selection	O Bot	h				O User-Define	
	Fault Bus ID: 10 Bus ID: 11 Bus ID: 12	All Buses Bus IC Bus IC	Bus ID: 3		Oevice Duty Based or Total Bus Fault Curr Max Through Fault 1	ent	○ WTG/Inverter Contr	ol Adjustment Angle
	Bus ID: 13 Bus ID: 14 Bus ID: 15 Bus ID: 15 Bus ID: 16 Bus ID: 17 Bus 1 Bus 3	LV Buses Bus IC Bus IC Bus IC << Fault Bus IC Bus IC Bus IC	Buses Bus ID: 5 Bus ID: 6 Bus ID: 7 Bus ID: 8 Bus ID: 9 Bus ID: 9		O Hux Hildugi Fudu	Contona	MF for HV CB & Bus M	ated X/R MS & Peak) as Minimum
	Bus15 Rue16 Study Remarks	* Fault >> Bus8					MF for LV CB (Molded & Insulated) Duty Based on Peak Current Based on Asymmetrical Current Higher MF (Peak or Asymmetrical)	
short Circuit		and Max. Temp. for ANSI Min. Short-C	ircuit	<				
Standard	Impedance Tolerance	Length Tolerand						
PreFault Adjustment Alert	 ✓ Transformer ● Individual ○ Global 	Cable	/ Busway					
	✓ Reactor	Transr	nission Line Length					
		✓ Cable	Resistance Temperature Correction					
	Fault 27	ੁ Glo ਣ	nission Line vidual Min/Max Temp.					
	Low V 105	Copy New Delet	OK Cancel					

Short Circuit MV 95%

Info	Study Case ID	Transformer Tap		Info	Standard	Prefault Voltage		HV CB Interrupting Capabili	
tandard reFault djustment	Med V 95 Load Terminal Fault Calc. Load Term. SC	Adjust Base kV Use Nominal Tap		Standard PreFault Adjustment	⊂ IEC	Fixed 95	95 Base kV inal kV (rom Bus Editor) Nominal kV (Nominal kV (
Alert	Equip. Cable & OL Heater Include Impedance for: MV Motors LV Motors	Report Contribution	Motor Contribution Based on Motor Status Loading Category Both	Alert	Zero Sequence Z Machine X/R Include Branch Y Fixed Variable		LVCB Interrupting Capability Evaluate Based on Rated Max. kV Limit © C37.13 / UL 489 User-Defined		
	Bus Selection Fault		Don't Fault		Device Duty Based or	1	WTG/Inverter Contr	ol Adjustment Angle	
	Pault Bus ID: 1 Bus ID: 2 Bus ID: 3 Bus ID: 4 Bus ID: 5 Bus ID: 6 Bus ID: 7 Bus ID: 7 Bus ID: 9	All Buses MV Buses LV Buses <- Fault	Bus 10: 10 Bus 10: 11 Bus 10: 12 Bus 10: 12 Bus 10: 13 Bus 10: 14 Bus 10: 15 Bus 10: 16 Bus 10: 17 Bus 10: 17 Bus 10: 17				0	ated X/R MS & Peak) as Minimum	
	Bus7 Bus8	~Fault >>	Busi Busi Busi5 Busi6				Set to 1.6 & 2.6 MF for LV CB (Molded Based on Peak	& Insulated) Duty	
♥ Short Circuit	Study Remarks	• Copy New	w Delete @ OK Cancel		Med V 95	•	Based on Asymm Higher MF (Peak Copy New Dele		
nfo	Med V 95	Copy Nev Copy Nev and Max. Temp. for ANSI Ma	×		Med V 95	•[O Higher MF (Peak	or Asymmetrical)	
nfo Standard	Med V 95	and Max. Temp. for ANSI Mi	×		Med V 95	• [O Higher MF (Peak	or Asymmetrical)	
Info Standard PreFault	Med V 95 Study Case Apply Pos. Tolerance Impedance Tolerance Transformer	and Max. Temp. for ANSI Mi	n. Short-Circuit		Med V 95	•[O Higher MF (Peak	or Asymmetrical)	
Short Circuit Info Standard PreFault Adjustment Alert	Med V 95 Study Case Apply Pos. Tolerance Transformer individual Global	and Max. Temp. for ANSI Ma	n. Short-Gircuit Tolerance Cable / Busway		Med V 55	• [O Higher MF (Peak	or Asymmetrical)	
Info Standard PreFault Adjustment	Med V 95 Study Case Apply Pos. Tolerance Impedance Tolerance Transformer individual	and Max. Temp. for ANSI Ma	n. Short-Gircuit Tolerance		Med V 95	• (O Higher MF (Peak	or Asymmetrical)	
Info Standard PreFault Adjustment	Med V 95 Study Case Papply Pos. Tolerance Impedance Tolerance Transformer individual Global Paeactor individual	and Max. Temp. for ANSI Mi	n. Shot-Circuit Tolerance Cable / Busway		Med V 95	• [O Higher MF (Peak	or Asymmetrical)	

Short Circuit Medium Voltage 105%

	Study Case			× etap Short	Circuit Study Case					
info Standard PreFault Adjustment Alert	Study Case ID Load Terminal Fault Calc. Load Term. SC Equip. Cable & OL Heater Include Impedance for: MV Motors UV Motors Bus Selection Fault Bus ID: 1 Bus ID: 2 Bus ID: 2 Bus ID: 3 Bus ID: 4	Info Standar PreFaul Adjustn Alert	d Standard O IEC	Pranch Y y Based on	Vmag X Nomin Machine X/R	5 C Ba	terrupting Cap valuate Based C37.13 / UL 4 Jser-Defined verter Control	d on Rated Max. k.V. Limit 189 Adjustment Angle		
			Bus 10: 14 Bus 10: 15 Bus 10: 15 Bus 10: 16 Bus 10: 17 Bus 1 Bus 13 Bus 15 Bus 15 Bus 15	•		 Med V 105 - 		MF for HV CB & Bus Momentary Duty @ Based on Calculated X/R Use 1.6 & 2.5 (FMS & Peak) as Minimum Set to 1.6 & 2.6 (FMS & Peak) MF for LV C2 (FMded & Inualed) Duty @ Based on Peak Current @ Based on Peak Current @ Higher MF (Peak or Asymmetrical) Copy New Delete @ OK Car		ed X/R S & Peak) as Minimum MS & Peak) Insulated) Duty arrent frical Current or Asymmetrical)
		Copy Ner	w Delete 🕜 OK Cancel)		4ed V 105	•	Copy	Vew Delete	
	itudy Case	Copy Inc.	w Delete 🧭 OK Cancel			fed V 105	•	Copy Iv	Jelete	
nfo	Apply Pos. Tolerance	and Max. Temp. for ANSI Mir	n. Short-Circuit		M	led V 105	•	Copy IV	Jeiete	UK Cande
 Short Circuit S Short Circuit S Standard PreFault Adjustment 		and Max. Temp. for ANSI Min				fed V 105	*		vew Delete	
nfo tandard reFault djustment	Apply Pos. Tolerance Impedance Tolerance Transformer Individual Global Global Global Global Global	and Max. Temp. for ANSI Mir Length	n. Short-Circuit Tolerance			led V 105	-		vew Ublete	
nfo tandard reFault xdjustment	Apply Pos. Tolerance Impedance Tolerance Impedance Tolerance Individual Global V Reactor i Individual	and Max. Temp. for ANSI Mr	n. Short-Circuit Tolerance Cable / Busway			led V 105			Uelete	
nfo itandard !reFault	Apply Pos. Tolerance Impedance Tolerance Transformer Individual Global Global Global Global Global	and Max. Temp. for ANSI Mr	 Short-Circuit Tolerance Cable / Busway Transmission Line Length 			led V 105			ew Delete	

Appendix B: Short circuit results

Low Voltage 95% Power Factor Test Case

Project: Location:		ETAP 24.0.0E		Page: Date:	1 11-20-2024
Contract:			S	SN:	IASTATEPL
Engineer:		Study Case: Low V 95	R	Revision:	Base
Filename:	AMES_BESS	,	С	Config.:	Normal

Short-Circuit Summary Report

1/2 Cycle - 3-Phase, LG, LL, & LLG Fault Currents

Prefault Voltage = 95 % of the Bus Nominal Voltage

Bus		3	-Phase Fau	lt	Line-	to-Ground	Fault	Lin	e-to-Line F	ault	*Line-to	o-Line-to-G	Ground
ID	kV	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.
Bus ID: 10	0.480	3.751	-25.897	26.168	3.737	-25.929	26.197	-22.179	-3.231	22.413	20.308	16.360	26.077
Bus ID: 11	0.760	3.242	-43.032	43.154	3.467	-45.887	46.018	-38.169	-2.787	38.271	-40.224	22.410	46.045
Bus ID: 12	0.760	3.220	-43.046	43.166	3.451	-45.868	45.998	-38.092	-2.767	38.192	-40.231	22.432	46.062
Bus ID: 13	0.760	3.207	-43.057	43.176	3.441	-45.847	45.976	-38.123	-2.756	38.223	-40.238	22.446	46.075
Bus ID: 14	0.760	3.208	-43.055	43.174	3.440	-45.820	45.949	-38.142	-2.758	38.242	-40.237	22.445	46.073
Bus ID: 15	0.760	3.224	-43.043	43.164	3.452	-45.788	45.918	-38.153	-2.772	38.254	-40.230	22.428	46.059
Bus ID: 16	0.760	3.246	-43.029	43.152	3.468	-45.749	45.880	-38.167	-2.791	38.269	-40.222	22.406	46.042
Bus ID: 17	0.480	3.723	-24.431	24.713	3.299	-23.202	23.435	-20.868	-3.202	21.112	19.394	14.385	24.147
Busl	0.480	9.100	-13.929	16.638	4.730	-11.024	11.996	-12.063	-7.880	14.409	10.655	12.290	16.266
Bus3	0.480	9.025	-11.412	14.549	4.199	-8.979	9.912	-9.883	-7.816	12.600	8.721	11.310	14.282
Bus15	0.480	8.910	-10.641	13.879	4.012	-8.389	9.299	-9.216	-7.716	12.019	8.129	10.955	13.642
Bus16	0.480	9.122	-12.774	15.696	4.502	-10.060	11.021	-11.062	-7.900	13.594	9.768	11.872	15.373
Bus21	0.480	8.912	-10.656	13.892	4.016	-8.400	9.311	-9.228	-7.718	12.030	8.141	10.962	13.654
Bus22	0.480	8.490	-8.927	12.319	3.562	-7.119	7.961	-7.731	-7.353	10.669	6.811	10.054	12.144
Bus23	0.480	8.312	-8.395	11.814	3.412	-6.734	7.549	-7.271	-7.198	10.231	6.402	9.740	11.656
Bus24	0.480	8.748	-9.863	13.183	3.814	-7.807	8.688	-8.542	-7.576	11.417	7.531	10.566	12.975
Bus33	0.480	8.315	-8.406	11.824	3.415	-6.742	7.557	-7.279	-7.201	10.240	6.410	9.746	11.665
Bus34	0.480	7.636	-6.822	10.239	2.939	-5.606	6.329	-5.908	-6.613	8.867	5.192	8.694	10.127
Bus35	0.480	8.105	-7.855	11.287	3.255	-6.345	7.131	-6.802	-7.019	9.775	5.986	9.401	11.145
Bus36	0.480	8.179	-8.040	11.469	3.309	-6.478	7.275	-6.963	-7.083	9.933	6.129	9.519	11.322
Bus37	0.480	7.709	-6.969	10.392	2.985	-5.711	6.444	-6.035	-6.676	9.000	5.305	8.800	10.275
Bus38	0.480	7.620	-6.790	10.206	2.928	-5.583	6.305	-5.880	-6.599	8.839	5.167	8.671	10.094
Bus39	0.480	7.504	-6.568	9.973	2.858	-5.424	6.131	-5.688	-6.499	8.636	4.997	8.508	9.867
Bus40	0.480	8.117	-7.884	11.316	3.263	-6.366	7.154	-6.828	-7.030	9.800	6.009	9.420	11.173
Bus54	0.480	7.819	-7.198	10.627	3.056	-5.875	6.622	-6.233	-6.771	9.203	5.481	8.961	10.505
Bus61	0.480	7.060	-5.792	9.132	2.602	-4.869	5.520	-5.016	-6.115	7.909	4.401	7.902	9.045
Bus63	0.480	6.978	-5.661	8.986	2.557	-4.774	5.416	-4.902	-6.043	7.782	4.300	7.794	8.901
Bus64	0.480	7.444	-6.456	9.854	2.822	-5.344	6.044	-5.591	-6.447	8.534	4.911	8.424	9.751
Bus65	0.480	6.879	-5.506	8.811	2.504	-4.662	5.292	-4.768	-5.957	7.630	4.181	7.663	8.729
Bus66	0.480	6.476	-4.920	8.133	2.297	-4.237	4.819	-4.260	-5.608	7.043	3.731	7.148	8.063
Bus67	0.480	6.403	-4.820	8.015	2.261	-4.164	4.738	-4.175	-5.545	6.941	3.655	7.057	7.947

Project: Location:			TAP .0.0E	0	2 11-20-2024
Contract:				SN:	IASTATEPL
Engineer:		Study Case	e: Low V 95	Revision:	Base
Filename:	AMES_BESS	Study Cus		Config.:	Normal

1/2 Cycle - 3-Phase, LG, LL, & LLG Fault Currents

Prefault Voltage = 95 % of the Bus Nominal Voltage

	Bus		3-Phase Fault		Line-to-Ground Fault		Line-to-Line Fault			*Line-to-Line-to-Ground				
	ID	kV	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.
Bus69		0.480	6.819	-5.415	8.708	2.472	-4.597	5.219	-4.690	-5.906	7.541	4.111	7.586	8.628

All fault currents are symmetrical (1/2 Cycle network) values in rms kA. * LLG fault current is the larger of the two faulted line currents.

Project:		ETAP		Page:	3
Location:		24.0.0E		Date:	11-20-2024
Contract:				SN:	IASTATEPL
Engineer:		Study Case: Low V 95		Revision:	Base
Filename:	AMES_BESS	Study Case. 2011 755			Normal

Sequence Impedance Summary Report

Bus	Positiv	e Seq. Imp.	(ohm)	Negativ	ve Seq. Imp.	(ohm)	Zero	Seq. Imp. ((ohm)	F	ault Zf (ohr	n)
ID kV	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus ID: 10 0.480	0.00147	0.01007	0.01017	0.00147	0.01007	0.01017	0.00137	0.00971	0.00980	0.00000	0.00000	0.00000
Bus ID: 11 0.760	0.00082	0.01024	0.01028	0.00082	0.01024	0.01028	0.00069	0.00838	0.00841	0.00000	0.00000	0.00000
Bus ID: 12 0.760	0.00081	0.01024	0.01027	0.00081	0.01024	0.01027	0.00069	0.00838	0.00841	0.00000	0.00000	0.00000
Bus ID: 13 0.760	0.00081	0.01024	0.01027	0.00081	0.01024	0.01027	0.00069	0.00838	0.00841	0.00000	0.00000	0.00000
Bus ID: 14 0.760	0.00081	0.01024	0.01027	0.00081	0.01024	0.01027	0.00069	0.00838	0.00841	0.00000	0.00000	0.00000
Bus ID: 15 0.760	0.00081	0.01024	0.01027	0.00081	0.01024	0.01027	0.00069	0.00838	0.00841	0.00000	0.00000	0.00000
Bus ID: 16 0.760	0.00082	0.01024	0.01028	0.00082	0.01024	0.01028	0.00069	0.00838	0.00841	0.00000	0.00000	0.00000
Bus ID: 17 0.480	0.00164	0.01067	0.01080	0.00164	0.01067	0.01080	0.00147	0.01202	0.01211	0.00000	0.00000	0.00000
Bus1 0.480	0.00865	0.01325	0.01582	0.00865	0.01325	0.01582	0.00865	0.03401	0.03509	0.00000	0.00000	0.00000
Bus3 0.480	0.01122	0.01419	0.01810	0.01122	0.01419	0.01810	0.01130	0.04380	0.04523	0.00000	0.00000	0.00000
Bus15 0.480	0.01218	0.01454	0.01897	0.01218	0.01454	0.01897	0.01229	0.04753	0.04909	0.00000	0.00000	0.00000
Bus16 0.480	0.00975	0.01365	0.01677	0.00975	0.01365	0.01677	0.00978	0.03812	0.03935	0.00000	0.00000	0.00000
Bus21 0.480	0.01216	0.01454	0.01895	0.01216	0.01454	0.01895	0.01227	0.04746	0.04902	0.00000	0.00000	0.00000
Bus22 0.480	0.01473	0.01549	0.02137	0.01473	0.01549	0.02137	0.01494	0.05776	0.05966	0.00000	0.00000	0.00000
Bus23 0.480	0.01568	0.01584	0.02228	0.01568	0.01584	0.02228	0.01593	0.06165	0.06367	0.00000	0.00000	0.00000
Bus24 0.480	0.01325	0.01494	0.01997	0.01325	0.01494	0.01997	0.01340	0.05180	0.05350	0.00000	0.00000	0.00000
Bus33 0.480	0.01566	0.01583	0.02227	0.01566	0.01583	0.02227	0.01591	0.06157	0.06359	0.00000	0.00000	0.00000
Bus34 0.480	0.01917	0.01713	0.02571	0.01917	0.01713	0.02571	0.01958	0.07626	0.07873	0.00000	0.00000	0.00000
Bus35 0.480	0.01675	0.01623	0.02333	0.01675	0.01623	0.02333	0.01705	0.06608	0.06825	0.00000	0.00000	0.00000
Bus36 0.480	0.01637	0.01609	0.02295	0.01637	0.01609	0.02295	0.01665	0.06450	0.06662	0.00000	0.00000	0.00000
Bus37 0.480	0.01879	0.01699	0.02533	0.01879	0.01699	0.02533	0.01918	0.07465	0.07707	0.00000	0.00000	0.00000
Bus38 0.480	0.01926	0.01716	0.02580	0.01926	0.01716	0.02580	0.01967	0.07662	0.07910	0.00000	0.00000	0.00000
Bus39 0.480	0.01987	0.01739	0.02640	0.01987	0.01739	0.02640	0.02031	0.07920	0.08176	0.00000	0.00000	0.00000
Bus40 0.480	0.01669	0.01621	0.02327	0.01669	0.01621	0.02327	0.01698	0.06582	0.06798	0.00000	0.00000	0.00000
Bus54 0.480	0.01823	0.01678	0.02477	0.01823	0.01678	0.02477	0.01859	0.07225	0.07461	0.00000	0.00000	0.00000
Bus61 0.480	0.02229	0.01828	0.02883	0.02229	0.01828	0.02883	0.02286	0.08962	0.09248	0.00000	0.00000	0.00000
Bus63 0.480	0.02275	0.01846	0.02930	0.02275	0.01846	0.02930	0.02335	0.09164	0.09457	0.00000	0.00000	0.00000
Bus64 0.480	0.02018	0.01750	0.02672	0.02018	0.01750	0.02672	0.02064	0.08056	0.08316	0.00000	0.00000	0.00000
Bus65 0.480	0.02333	0.01867	0.02988	0.02333	0.01867	0.02988	0.02396	0.09415	0.09715	0.00000	0.00000	0.00000
Bus66 0.480	0.02578	0.01958	0.03237	0.02578	0.01958	0.03237	0.02655	0.10491	0.10822	0.00000	0.00000	0.00000
Bus67 0.480	0.02624	0.01976	0.03285	0.02624	0.01976	0.03285	0.02704	0.10698	0.11034	0.00000	0.00000	0.00000
Bus69 0.480	0.02368	0.01880	0.03023	0.02368	0.01880	0.03023	0.02432	0.09567	0.09871	0.00000	0.00000	0.00000

Low Voltage 105% Power Factor

Project: Location:		ETAP 24.0.0E		Page: Date:	1 11-20-2024
Contract:				SN:	IASTATEPL
Engineer:		Study Case: Low V 10)5	Revision:	Base
Filename:	AMES_BESS			Config.:	Normal

Short-Circuit Summary Report

1/2 Cycle - 3-Phase, LG, LL, & LLG Fault Currents

Prefault Voltage = 105 % of the Bus Nominal Voltage

Bus		3	-Phase Fau	lt	Line-	to-Ground	Fault	Line	e-to-Line F	ault	*Line-to	-Line-to-G	round
ID	kV	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.
Bus ID: 10	0.480	4.124	-28.306	28.604	4.130	-28.659	28.955	-24.513	-3.571	24.772	22.445	18.082	28.822
Bus ID: 11	0.760	3.578	-46.910	47.047	3.827	-49.550	49.698	-41.120	-3.078	41.236	-43.495	24.145	49.747
Bus ID: 12	0.760	3.554	-46.925	47.060	3.809	-49.561	49.707	-41.133	-3.057	41.247	-43.503	24.169	49.766
Bus ID: 13	0.760	3.539	-46.938	47.071	3.798	-49.570	49.715	-41.144	-3.045	41.256	-43.510	24.185	49.780
Bus ID: 14	0.760	3.540	-46.936	47.069	3.799	-49.568	49.714	-41.142	-3.046	41.255	-43.509	24.183	49.778
Bus ID: 15	0.760	3.558	-46.922	47.057	3.813	-49.559	49.705	-41.131	-3.061	41.244	-43.501	24.164	49.762
Bus ID: 16	0.760	3.582	-46.908	47.044	3.830	-49.548	49.696	-41.118	-3.082	41.233	-43.493	24.141	49.744
Bus ID: 17	0.480	4.087	-26.633	26.945	3.646	-25.644	25.902	-23.065	-3.539	23.335	21.436	15.900	26.689
Bus1	0.480	10.057	-15.395	18.389	5.228	-12.185	13.259	-13.333	-8.710	15.926	11.776	13.584	17.978
Bus3	0.480	9.975	-12.613	16.081	4.641	-9.924	10.955	-10.923	-8.639	13.926	9.639	12.500	15.785
Bus15	0.480	9.848	-11.761	15.340	4.435	-9.272	10.278	-10.186	-8.528	13.284	8.985	12.108	15.078
Bus16	0.480	10.082	-14.118	17.349	4.975	-11.118	12.181	-12.227	-8.732	15.024	10.796	13.121	16.992
Bus21	0.480	9.850	-11.777	15.354	4.439	-9.285	10.291	-10.200	-8.531	13.297	8.998	12.116	15.091
Bus22	0.480	9.384	-9.866	13.616	3.937	-7.869	8.798	-8.544	-8.127	11.792	7.528	11.112	13.422
Bus23	0.480	9.187	-9.279	13.057	3.771	-7.443	8.344	-8.036	-7.956	11.308	7.076	10.765	12.882
Bus24	0.480	9.669	-10.901	14.571	4.216	-8.628	9.603	-9.441	-8.373	12.619	8.324	11.678	14.341
Bus33	0.480	9.191	-9.290	13.068	3.775	-7.451	8.353	-8.046	-7.959	11.317	7.085	10.772	12.893
Bus34	0.480	8.440	-7.540	11.317	3.248	-6.196	6.996	-6.530	-7.309	9.801	5.738	9.610	11.193
Bus35	0.480	8.958	-8.681	12.475	3.597	-7.013	7.882	-7.518	-7.758	10.803	6.616	10.390	12.318
Bus36	0.480	9.040	-8.887	12.676	3.658	-7.160	8.041	-7.696	-7.829	10.978	6.774	10.522	12.514
Bus37	0.480	8.520	-7.702	11.486	3.299	-6.312	7.122	-6.670	-7.379	9.947	5.863	9.726	11.357
Bus38	0.480	8.422	-7.504	11.280	3.237	-6.171	6.968	-6.499	-7.293	9.769	5.711	9.584	11.157
Bus39	0.480	8.294	-7.259	11.022	3.158	-5.995	6.776	-6.287	-7.183	9.546	5.523	9.403	10.905
Bus40	0.480	8.972	-8.714	12.507	3.607	-7.037	7.907	-7.547	-7.770	10.831	6.642	10.412	12.350
Bus54	0.480	8.642	-7.955	11.746	3.378	-6.493	7.319	-6.890	-7.484	10.172	6.058	9.904	11.610
Bus61	0.480	7.804	-6.402	10.094	2.876	-5.381	6.101	-5.544	-6.758	8.741	4.864	8.734	9.997
Bus63	0.480	7.713	-6.257	9.932	2.826	-5.277	5.986	-5.419	-6.680	8.601	4.753	8.614	9.838
Bus64	0.480	8.228	-7.135	10.891	3.119	-5.907	6.680	-6.179	-7.126	9.432	5.428	9.310	10.777
Bus65	0.480	7.603	-6.085	9.738	2.767	-5.153	5.849	-5.270	-6.584	8.433	4.621	8.470	9.648
Bus66	0.480	7.158	-5.437	8.989	2.538	-4.683	5.327	-4.709	-6.199	7.784	4.124	7.900	8.912
Bus67	0.480	7.077	-5.328	8.859	2.499	-4.603	5.237	-4.614	-6.129	7.672	4.040	7.799	8.784

I	Project:		ETAP 24.0.0E		Page:	2
1	ocation:		24.0.	.0E	Date:	11-20-2024
G	Contract:				SN:	IASTATEPL
1	Engineer:		Study Case:	Low V 105	Revision:	Base
I	ilename: AME	ES_BESS			Config.:	Normal

1/2 Cycle - 3-Phase, LG, LL, & LLG Fault Currents

Prefault Voltage = 105 % of the Bus Nominal Voltage

	Bus		3-Phase Fault			Line-to-Ground Fault			Line-to-Line Fault			*Line-to-Line-to-Ground		
	ID	kV	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.
Bus6	9	0.480	7.537	-5.985	9.624	2.733	-5.081	5.769	-5.183	-6.527	8.335	4.544	8.385	9.537

All fault currents are symmetrical (1/2 Cycle network) values in rms kA. * LLG fault current is the larger of the two faulted line currents.

Project:		ETAP	Page:	3
Location:		24.0.0E	Date:	11-20-2024
Contract:			SN:	IASTATEPL
Engineer:		Study Case: Low V 105	Revision:	Base
Filename:	AMES_BESS	Study Cuse. Low V 105	Config.:	Normal

Sequence Impedance Summary Report

Bus		Positiv	e Seq. Imp.	Imp. (ohm) Negative Seq. Imp. (ohm) Zero Seq. Imp. (ohm) Faul		Zero Seq. Imp. (ohm)		Fault Zf (ohm)					
ID	kV	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus ID: 10	0.480	0.00147	0.01007	0.01017	0.00147	0.01007	0.01017	0.00137	0.00971	0.00980	0.00000	0.00000	0.00000
Bus ID: 11	0.760	0.00082	0.01024	0.01028	0.00082	0.01024	0.01028	0.00069	0.00838	0.00841	0.00000	0.00000	0.00000
Bus ID: 12	0.760	0.00081	0.01024	0.01027	0.00081	0.01024	0.01027	0.00069	0.00838	0.00841	0.00000	0.00000	0.00000
Bus ID: 13	0.760	0.00081	0.01024	0.01027	0.00081	0.01024	0.01027	0.00069	0.00838	0.00841	0.00000	0.00000	0.00000
Bus ID: 14	0.760	0.00081	0.01024	0.01027	0.00081	0.01024	0.01027	0.00069	0.00838	0.00841	0.00000	0.00000	0.00000
Bus ID: 15	0.760	0.00081	0.01024	0.01027	0.00081	0.01024	0.01027	0.00069	0.00838	0.00841	0.00000	0.00000	0.00000
Bus ID: 16	0.760	0.00082	0.01024	0.01028	0.00082	0.01024	0.01028	0.00069	0.00838	0.00841	0.00000	0.00000	0.00000
Bus ID: 17	0.480	0.00164	0.01067	0.01080	0.00164	0.01067	0.01080	0.00147	0.01202	0.01211	0.00000	0.00000	0.00000
Bus1	0.480	0.00865	0.01325	0.01582	0.00865	0.01325	0.01582	0.00865	0.03401	0.03509	0.00000	0.00000	0.00000
Bus3	0.480	0.01122	0.01419	0.01810	0.01122	0.01419	0.01810	0.01130	0.04380	0.04523	0.00000	0.00000	0.00000
Bus15	0.480	0.01218	0.01454	0.01897	0.01218	0.01454	0.01897	0.01229	0.04753	0.04909	0.00000	0.00000	0.00000
Bus16	0.480	0.00975	0.01365	0.01677	0.00975	0.01365	0.01677	0.00978	0.03812	0.03935	0.00000	0.00000	0.00000
Bus21	0.480	0.01216	0.01454	0.01895	0.01216	0.01454	0.01895	0.01227	0.04746	0.04902	0.00000	0.00000	0.00000
Bus22	0.480	0.01473	0.01549	0.02137	0.01473	0.01549	0.02137	0.01494	0.05776	0.05966	0.00000	0.00000	0.00000
Bus23	0.480	0.01568	0.01584	0.02228	0.01568	0.01584	0.02228	0.01593	0.06165	0.06367	0.00000	0.00000	0.00000
Bus24	0.480	0.01325	0.01494	0.01997	0.01325	0.01494	0.01997	0.01340	0.05180	0.05350	0.00000	0.00000	0.00000
Bus33	0.480	0.01566	0.01583	0.02227	0.01566	0.01583	0.02227	0.01591	0.06157	0.06359	0.00000	0.00000	0.00000
Bus34	0.480	0.01917	0.01713	0.02571	0.01917	0.01713	0.02571	0.01958	0.07626	0.07873	0.00000	0.00000	0.00000
Bus35	0.480	0.01675	0.01623	0.02333	0.01675	0.01623	0.02333	0.01705	0.06608	0.06825	0.00000	0.00000	0.00000
Bus36	0.480	0.01637	0.01609	0.02295	0.01637	0.01609	0.02295	0.01665	0.06450	0.06662	0.00000	0.00000	0.00000
Bus37	0.480	0.01879	0.01699	0.02533	0.01879	0.01699	0.02533	0.01918	0.07465	0.07707	0.00000	0.00000	0.00000
Bus38	0.480	0.01926	0.01716	0.02580	0.01926	0.01716	0.02580	0.01967	0.07662	0.07910	0.00000	0.00000	0.00000
Bus39	0.480	0.01987	0.01739	0.02640	0.01987	0.01739	0.02640	0.02031	0.07920	0.08176	0.00000	0.00000	0.00000
Bus40	0.480	0.01669	0.01621	0.02327	0.01669	0.01621	0.02327	0.01698	0.06582	0.06798	0.00000	0.00000	0.00000
Bus54	0.480	0.01823	0.01678	0.02477	0.01823	0.01678	0.02477	0.01859	0.07225	0.07461	0.00000	0.00000	0.00000
Bus61	0.480	0.02229	0.01828	0.02883	0.02229	0.01828	0.02883	0.02286	0.08962	0.09248	0.00000	0.00000	0.00000
Bus63	0.480	0.02275	0.01846	0.02930	0.02275	0.01846	0.02930	0.02335	0.09164	0.09457	0.00000	0.00000	0.00000
Bus64	0.480	0.02018	0.01750	0.02672	0.02018	0.01750	0.02672	0.02064	0.08056	0.08316	0.00000	0.00000	0.00000
Bus65	0.480	0.02333	0.01867	0.02988	0.02333	0.01867	0.02988	0.02396	0.09415	0.09715	0.00000	0.00000	0.00000
Bus66	0.480	0.02578	0.01958	0.03237	0.02578	0.01958	0.03237	0.02655	0.10491	0.10822	0.00000	0.00000	0.00000
Bus67	0.480	0.02624	0.01976	0.03285	0.02624	0.01976	0.03285	0.02704	0.10698	0.11034	0.00000	0.00000	0.00000
Bus69	0.480	0.02368	0.01880	0.03023	0.02368	0.01880	0.03023	0.02432	0.09567	0.09871	0.00000	0.00000	0.00000

Medium Voltage 95% Power Factor

Project: Location:		ЕТАР 24.0.0Е	Page: Date:	1 11-20-2024
Contract:			SN:	IASTATEPL
Engineer:		Study Case: Med V 95	Revision:	Base
Filename:	AMES_BESS	·	Config.:	Normal

Short-Circuit Summary Report

1/2 Cycle - 3-Phase, LG, LL, & LLG Fault Currents

Prefault Voltage = 95 % of the Bus Nominal Voltage

Bus		3-Phase Fault		Line-to-Ground Fault			Line-to-Line Fault			*Line-to-Line-to-Ground			
ID	kV	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.
Bus ID: 1	138.000	1.972	-13.824	13.964	1.653	-11.767	11.882	-11.990	-1.707	12.111	11.295	6.850	13.210
Bus ID: 2	34.500	0.259	-5.212	5.219	0.249	-5.396	5.402	-4.631	-0.220	4.636	4.561	3.084	5.506
Bus ID: 3	34.500	0.351	-5.132	5.144	0.397	-5.284	5.299	-4.551	-0.297	4.561	-4.818	2.513	5.434
Bus ID: 4	34.500	0.338	-5.139	5.150	0.379	-5.297	5.311	-4.558	-0.286	4.567	-4.813	2.532	5.438
Bus ID: 5	34.500	0.322	-5.146	5.156	0.357	-5.313	5.325	-4.566	-0.274	4.575	-4.807	2.554	5.443
Bus ID: 6	34.500	0.313	-5.153	5.162	0.342	-5.324	5.335	-4.573	-0.266	4.581	-4.803	2.569	5.446
Bus ID: 7	34.500	0.314	-5.152	5.161	0.343	-5.322	5.333	-4.572	-0.266	4.580	-4.802	2.567	5.445
Bus ID: 8	34.500	0.325	-5.145	5.155	0.361	-5.309	5.322	-4.565	-0.276	4.573	-4.808	2.549	5.442
Bus ID: 9	34.500	0.341	-5.137	5.149	0.382	-5.294	5.308	-4.557	-0.289	4.566	-4.814	2.528	5.437
Bus7	138.000	1.972	-13.824	13.964	1.653	-11.767	11.882	-11.990	-1.707	12.111	11.295	6.850	13.210
Bus8	138.000	2.469	-19.676	19.830	2.588	-20.622	20.784	-17.040	-2.138	17.174	-18.399	8.694	20.350

All fault currents are symmetrical (1/2 Cycle network) values in rms kA. * LLG fault current is the larger of the two faulted line currents.

Project: Location:		ETAP 24.0.0E	Page: Date:	2 11-20-2024
Contract:			SN:	IASTATEPL
Engineer:		Study Case: Med V 95	Revision:	Base
Filename:	AMES_BESS	Study Case. Med V 35	Config.:	Normal

Sequence Impedance Summary Report

Bus		Positive Seq. Imp. (ohm)			Negative Seq. Imp. (ohm)			Zero Seq. Imp. (ohm)			Fault Zf (ohm)		
ID	kV	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus ID: 1	138.000	0.77257	5.39040	5.44548	0.77257	5.39040	5.44548	1.13424	8.21192	8.28989	0.00000	0.00000	0.00000
Bus ID: 2	34.500	0.19703	3.78705	3.79217	0.19703	3.78705	3.79217	0.14597	3.45947	3.46255	0.00000	0.00000	0.00000
Bus ID: 3	34.500	0.27313	3.84415	3.85384	0.27313	3.84415	3.85384	0.34018	3.53420	3.55053	0.00000	0.00000	0.00000
Bus ID: 4	34.500	0.26258	3.83986	3.84882	0.26258	3.83986	3.84882	0.31691	3.52226	3.53648	0.00000	0.00000	0.00000
Bus ID: 5	34.500	0.25030	3.83486	3.84302	0.25030	3.83486	3.84302	0.28983	3.50836	3.52032	0.00000	0.00000	0.00000
Bus ID: 6	34.500	0.24255	3.83018	3.83785	0.24255	3.83018	3.83785	0.26957	3.49951	3.50988	0.00000	0.00000	0.00000
Bus ID: 7	34.500	0.24336	3.83109	3.83881	0.24336	3.83109	3.83881	0.27134	3.50008	3.51058	0.00000	0.00000	0.00000
Bus ID: 8	34.500	0.25283	3.83588	3.84420	0.25283	3.83588	3.84420	0.29464	3.51179	3.52413	0.00000	0.00000	0.00000
Bus ID: 9	34.500	0.26492	3.84082	3.84995	0.26492	3.84082	3.84995	0.32121	3.52542	3.54002	0.00000	0.00000	0.00000
Bus7	138.000	0.77257	5.39040	5.44548	0.77257	5.39040	5.44548	1.13424	8.21192	8.28989	0.00000	0.00000	0.00000
Bus8	138.000	0.47519	3.78722	3.81692	0.47519	3.78722	3.81692	0.40977	3.26582	3.29143	0.00000	0.00000	0.00000

Medium Voltage 105%

Project: Location:		ETAP 24.0.0E		Page: Date:	1 11-20-2024
Contract:				SN:	IASTATEPL
Engineer:		Study Case: Med	1 V 105	Revision:	Base
Filename:	AMES_BESS			Config.:	Normal

Short-Circuit Summary Report

1/2 Cycle - 3-Phase, LG, LL, & LLG Fault Currents

Prefault Voltage = 105 % of the Bus Nominal Voltage

Bus		3-Phase Fault			Line-to-Ground Fault			Line-to-Line Fault			*Line-to-Line-to-Ground		
ID	kV	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.
Bus ID: 1	138.000	2.180	-15.273	15.427	1.828	-12.991	13.119	-13.237	-1.887	13.371	12.470	7.565	14.585
Bus ID: 2	34.500	0.287	-5.737	5.744	0.276	-5.890	5.897	-5.055	-0.245	5.061	5.002	3.387	6.041
Bus ID: 3	34.500	0.388	-5.649	5.662	0.440	-5.768	5.784	-4.968	-0.330	4.979	-5.289	2.752	5.962
Bus ID: 4	34.500	0.373	-5.656	5.668	0.419	-5.782	5.797	-4.975	-0.318	4.986	-5.283	2.773	5.967
Bus ID: 5	34.500	0.356	-5.664	5.675	0.395	-5.799	5.812	-4.984	-0.304	4.993	-5.276	2.798	5.972
Bus ID: 6	34.500	0.346	-5.671	5.682	0.378	-5.811	5.823	-4.992	-0.295	5.000	-5.271	2.814	5.975
Bus ID: 7	34.500	0.347	-5.670	5.681	0.380	-5.809	5.822	-4.990	-0.296	4.999	-5.271	2.812	5.975
Bus ID: 8	34.500	0.360	-5.662	5.674	0.399	-5.795	5.809	-4.983	-0.307	4.992	-5.277	2.793	5.970
Bus ID: 9	34.500	0.376	-5.654	5.667	0.423	-5.779	5.794	-4.974	-0.321	4.984	-5.284	2.768	5.965
Bus7	138.000	2.180	-15.273	15.427	1.828	-12.991	13.119	-13.237	-1.887	13.371	12.470	7.565	14.585
Bus8	138.000	2.729	-21.747	21.918	2.860	-22.793	22.972	-18.834	-2.363	18.981	-20.336	9.609	22.492

All fault currents are symmetrical (1/2 Cycle network) values in rms kA. * LLG fault current is the larger of the two faulted line currents.

Project: Location:		ETAP 24.0.0E	Page: Date:	2 11-20-2024
Contract:			SN:	IASTATEPL
Engineer:		Study Case: Med V 105	Revision:	Base
Filename:	AMES_BESS	Study Cuse. Med 1 105	Config.:	Normal

Sequence Impedance Summary Report

Bus		Positiv	e Seq. Imp.	(ohm)	Negativ	ve Seq. Imp	(ohm)	Zero	Seq. Imp.	(ohm)	F	ault Zf (ohi	m)
ID	kV	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus ID: 1	138.000	0.77257	5.39040	5.44548	0.77257	5.39040	5.44548	1.13424	8.21192	8.28989	0.00000	0.00000	0.00000
Bus ID: 2	34.500	0.19703	3.78705	3.79217	0.19703	3.78705	3.79217	0.14597	3.45947	3.46255	0.00000	0.00000	0.00000
Bus ID: 3	34.500	0.27313	3.84415	3.85384	0.27313	3.84415	3.85384	0.34018	3.53420	3.55053	0.00000	0.00000	0.00000
Bus ID: 4	34.500	0.26258	3.83986	3.84882	0.26258	3.83986	3.84882	0.31691	3.52226	3.53648	0.00000	0.00000	0.00000
Bus ID: 5	34.500	0.25030	3.83486	3.84302	0.25030	3.83486	3.84302	0.28983	3.50836	3.52032	0.00000	0.00000	0.00000
Bus ID: 6	34.500	0.24255	3.83018	3.83785	0.24255	3.83018	3.83785	0.26957	3.49951	3.50988	0.00000	0.00000	0.00000
Bus ID: 7	34.500	0.24336	3.83109	3.83881	0.24336	3.83109	3.83881	0.27134	3.50008	3.51058	0.00000	0.00000	0.00000
Bus ID: 8	34.500	0.25283	3.83588	3.84420	0.25283	3.83588	3.84420	0.29464	3.51179	3.52413	0.00000	0.00000	0.00000
Bus ID: 9	34.500	0.26492	3.84082	3.84995	0.26492	3.84082	3.84995	0.32121	3.52542	3.54002	0.00000	0.00000	0.00000
Bus7	138.000	0.77257	5.39040	5.44548	0.77257	5.39040	5.44548	1.13424	8.21192	8.28989	0.00000	0.00000	0.00000
Bus8	138.000	0.47519	3.78722	3.81692	0.47519	3.78722	3.81692	0.40977	3.26582	3.29143	0.00000	0.00000	0.00000

Appendix C: Arc Flash Results

Low Voltage 95% Power Factor

Project: Location:		ETAP 24.0.0E		Page: Date:	1 12-05-2024
Contract:				SN:	IASTATEPL
Engineer:		Study Case: LV ArcF 9	5	Revision:	Base
Filename:	AMES_BESS~~~			Config.:	Normal

Bus Arc Flash Hazard Analysis Summary

	Faulted Bus			1	ault Curr	ent	Trip De	vice			Arc Flash			
ID	Nom. kV	Equipment Type	Gap (mm)	Bolted F Bus	ault (kA) PD	PD Arc Fault (kA)	Source Trip Device ID	Trip (cycle)	Open (cycle)	FCT (cycle)	Boundary (ft)	Incident Energy (cal/cm ²)	Working Distance (in)	Energy Level
Bus ID: 10	0.480	Other	13	22.835	0.305	0.214	Aux EXP	25.83	0.00	25.83	6.8	13.5	18	Level D
Bus ID: 11	0.760	Other	13	38.186						120.00	14.1	42.8	18	Level F
Bus ID: 12	0.760	Other	13	38.195						120.00	14.1	42.8	18	Level F
Bus ID: 13	0.760	Other	13	38.203						120.00	14.1	42.8	18	Level F
Bus ID: 14	0.760	Other	13	38.202						120.00	14.1	42.8	18	Level F
Bus ID: 15	0.760	Other	13	38.193						120.00	14.1	42.8	18	Level F
Bus ID: 16	0.760	Other	13	38.184						120.00	14.1	42.8	18	Level F
Bus ID: 17	0.480	Other	13	22.078	21.149	17.038	Aux Breaker	1.80	0.00	1.80	1.4	1.0	18	Level A
Bus1	0.480	Other	13	15.473	14.802	12.083	Aux Breaker	1.80	0.00	1.80	1.1	0.7	18	Level A
Bus3	0.480	Other	13	13.685	13.087	10.675	Aux Breaker	1.80	0.00	1.80	1.0	0.6	18	Level A
Bus15	0.480	Other	13	13.101	12.527	10.212	Aux Breaker	1.80	0.00	1.80	1.0	0.6	18	Level A
Bus16	0.480	Other	13	14.673	14.034	11.455	Aux Breaker	1.80	0.00	1.80	1.0	0.7	18	Level A
Bus21	0.480	Other	13	13.112	12.538	10.221	Aux Breaker	1.80	0.00	1.80	1.0	0.6	18	Level A
Bus22	0.480	Other	13	11.724	11.208	9.112	Aux Breaker	1.80	0.00	1.80	0.9	0.5	18	Level A
Bus23	0.480	Other	13	11.273	10.775	8.749	Aux Breaker	1.80	0.00	1.80	0.9	0.5	18	Level A
Bus24	0.480	Other	13	12.490	11.942	9.725	Aux Breaker	1.80	0.00	1.80	0.9	0.6	18	Level A
Bus33	0.480	Other	13	11.281	10.783	8.756	Aux Breaker	1.80	0.00	1.80	0.9	0.5	18	Level A
Bus34	0.480	Other	13	9.847	9.409	7.602	Aux Breaker	1.80	0.00	1.80	0.8	0.4	18	Level A
Bus35	0.480	Other	13	10.798	10.321	8.368	Aux Breaker	1.80	0.00	1.80	0.8	0.5	18	Level A
Bus36	0.480	Other	13	10.963	10.478	8.501	Aux Breaker	1.80	0.00	1.80	0.9	0.5	18	Level A
Bus37	0.480	Other	13	9.987	9.543	7.715	Aux Breaker	1.80	0.00	1.80	0.8	0.4	18	Level A
Bus38	0.480	Other	13	9.817	9.380	7.578	Aux Breaker	1.80	0.00	1.80	0.8	0.4	18	Level A
Bus39	0.480	Other	13	9.603	9.175	7.406	Aux Breaker	1.80	0.00	1.80	0.8	0.4	18	Level A
Bus40	0.480	Other	13	10.825	10.346	8.390	Aux Breaker	1.80	0.00	1.80	0.9	0.5	18	Level A
Bus54	0.480	Other	13	10.201	9.748	7.887	Aux Breaker	1.80	0.00	1.80	0.8	0.5	18	Level A
Bus61	0.480	Other	13	8.830	8.434	6.782	Aux Breaker	1.80	0.00	1.80	0.7	0.4	18	Level A
Bus63	0.480	Other	13	8.694	8.304	6.673	Aux Breaker	1.80	0.00	1.80	0.7	0.4	18	Level A
Bus64	0.480	Other	13	9.495	9.071	7.318	Aux Breaker	1.80	0.00	1.80	0.8	0.4	18	Level A
Bus65	0.480	Other	13	8.532	8.148	6.542	Aux Breaker	1.80	0.00	1.80	0.7	0.4	18	Level A
Bus66	0.480	Other	13	7.900	7.543	6.033	Aux Breaker	1.80	0.00	1.80	0.7	0.3	18	Level A
Bus67	0.480	Other	13	7.789	7.437	5.944	Aux Breaker	1.80	0.00	1.80	0.7	0.3	18	Level A
Bus69	0.480	Other	13	8.436	8.057	6.465	Aux Breaker	1.80	0.00	1.80	0.7	0.4	18	Level A

Project:		ETAP	F	Page:	1
Location:		24.0.0E	I	Date:	11-20-2024
Contract:			S	SN:	IASTATEPL
Engineer:		Study Case: LV ArcF 105	F	Revision:	Base
Filename:	AMES_BESS		C	Config.:	Normal

		Total F Current			Arc-Flash A			
ID	Nom. kV	Туре	Bolted	Arcing	FCT (cycles)	Incident E (cal/cm ²)	AFB (ft)	Energy Level
Bus ID: 10	0.480	Other	28.604	23.159	1.699	1.296	1.57	Level A
Bus ID: 11	0.760	Other	47.047	32.937	120.000	38.020	13.09	Level I
Bus ID: 12	0.760	Other	47.060	32.944	120.000	38.013	13.09	Level I
Bus ID: 13	0.760	Other	47.071	32.950	120.000	38.008	13.09	Level I
Bus ID: 14	0.760	Other	47.069	32.949	120.000	38.009	13.09	Level I
Bus ID: 15	0.760	Other	47.057	32.943	120.000	38.015	13.09	Level I
Bus ID: 16	0.760	Other	47.044	32.936	120.000	38.021	13.09	Level I
Bus ID: 17	0.480	Other	26.945	21.999	1.783	1.286	1.57	Level A
Bus1	0.480	Other	18.389	15.446	1.800	0.886	1.24	Level
Bus3	0.480	Other	16.081	13.540	1.800	0.769	1.13	Level
Bus15	0.480	Other	15.340	12.919	1.800	0.731	1.10	Level
Bus16	0.480	Other	17.349	14.593	1.800	0.833	1.19	Level A
Bus21	0.480	Other	15.354	12.931	1.800	0.732	1.10	Level A
Bus22	0.480	Other	13.616	11.459	1.800	0.643	1.01	Level
Bus23	0.480	Other	13.057	10.983	1.800	0.615	0.99	Level
Bus24	0.480	Other	14.571	12.271	1.800	0.692	1.06	Level
Bus33	0.480	Other	13.068	10.992	1.800	0.615	0.99	Level
Bus34	0.480	Other	11.317	9.488	1.800	0.526	0.89	Level
Bus35	0.480	Other	12.475	10.484	1.800	0.585	0.96	Level
Bus36	0.480	Other	12.676	10.657	1.800	0.595	0.97	Level
Bus37	0.480	Other	11.486	9.634	1.800	0.534	0.90	Level
Bus38	0.480	Other	11.280	9.457	1.800	0.524	0.89	Level
Bus39	0.480	Other	11.022	9.234	1.800	0.511	0.88	Level
Bus40	0.480	Other	12.507	10.512	1.800	0.586	0.96	Level
Bus54	0.480	Other	11.746	9.858	1.800	0.548	0.92	Level
Bus61	0.480	Other	10.094	8.433	1.800	0.464	0.83	Level
Bus63	0.480	Other	9.932	8.292	1.800	0.455	0.82	Level
Bus64	0.480	Other	10.891	9.121	1.800	0.504	0.87	Level
Bus65	0.480	Other	9.738	8.125	1.800	0.446	0.81	Level
Bus66	0.480	Other	8.989	7.477	1.800	0.408	0.76	Level
Bus67	0.480	Other	8.859	7.364	1.800	0.401	0.76	Level
Bus69	0.480	Other	9.624	8.027	1.800	0.440	0.80	Level /

Bus Incident Energy Summary

Low Voltage 105% Power Factor

Project:		ETAP	Page:	1
Location:		24.0.0E	Date:	11-20-2024
Contract:			SN:	IASTATEPL
Engineer:		Study Case: LV ArcF 105	Revision:	Base
Filename:	AMES_BESS		Config.:	Normal

Bus Incident Energy Summary

	Bus		Total F			Arc-Flash A	nalysis Res	ults
ID	Nom. kV	Туре	Bolted	Arcing	FCT (cycles)	Incident E (cal/cm ²)	AFB (ft)	Energy Level
Bus ID: 10	0.480	Other	28.604	23.159	1.699	1.296	1.57	Level A
Bus ID: 11	0.760	Other	47.047	32.937	120.000	38.020	13.09	Level E
Bus ID: 12	0.760	Other	47.060	32.944	120.000	38.013	13.09	Level E
Bus ID: 13	0.760	Other	47.071	32.950	120.000	38.008	13.09	Level E
Bus ID: 14	0.760	Other	47.069	32.949	120.000	38.009	13.09	Level E
Bus ID: 15	0.760	Other	47.057	32.943	120.000	38.015	13.09	Level E
Bus ID: 16	0.760	Other	47.044	32.936	120.000	38.021	13.09	Level E
Bus ID: 17	0.480	Other	26.945	21.999	1.783	1.286	1.57	Level A
Bus1	0.480	Other	18.389	15.446	1.800	0.886	1.24	Level A
Bus3	0.480	Other	16.081	13.540	1.800	0.769	1.13	Level A
Bus15	0.480	Other	15.340	12.919	1.800	0.731	1.10	Level A
Bus16	0.480	Other	17.349	14.593	1.800	0.833	1.19	Level A
Bus21	0.480	Other	15.354	12.931	1.800	0.732	1.10	Level A
Bus22	0.480	Other	13.616	11.459	1.800	0.643	1.01	Level A
Bus23	0.480	Other	13.057	10.983	1.800	0.615	0.99	Level A
Bus24	0.480	Other	14.571	12.271	1.800	0.692	1.06	Level A
Bus33	0.480	Other	13.068	10.992	1.800	0.615	0.99	Level A
Bus34	0.480	Other	11.317	9.488	1.800	0.526	0.89	Level A
Bus35	0.480	Other	12.475	10.484	1.800	0.585	0.96	Level A
Bus36	0.480	Other	12.676	10.657	1.800	0.595	0.97	Level A
Bus37	0.480	Other	11.486	9.634	1.800	0.534	0.90	Level A
Bus38	0.480	Other	11.280	9.457	1.800	0.524	0.89	Level A
Bus39	0.480	Other	11.022	9.234	1.800	0.511	0.88	Level A
Bus40	0.480	Other	12.507	10.512	1.800	0.586	0.96	Level A
Bus54	0.480	Other	11.746	9.858	1.800	0.548	0.92	Level A
Bus61	0.480	Other	10.094	8.433	1.800	0.464	0.83	Level A
Bus63	0.480	Other	9.932	8.292	1.800	0.455	0.82	Level A
Bus64	0.480	Other	10.891	9.121	1.800	0.504	0.87	Level A
Bus65	0.480	Other	9.738	8.125	1.800	0.446	0.81	Level A
Bus66	0.480	Other	8.989	7.477	1.800	0.408	0.76	Level A
Bus67	0.480	Other	8.859	7.364	1.800	0.401	0.76	Level A
Bus69	0.480	Other	9.624	8.027	1.800	0.440	0.80	Level A

Project:	ETAP	Page:	1
Location:	24.0.0E D	Date:	11-20-2024
Contract:	S	SN:	IASTATEPL
Engineer:	Study Case: LV ArcF 105 R	Revision:	Base
Filename: AMES_B	SS C	Config.:	Normal

Bus Arc Flash Hazard Analysis Summary

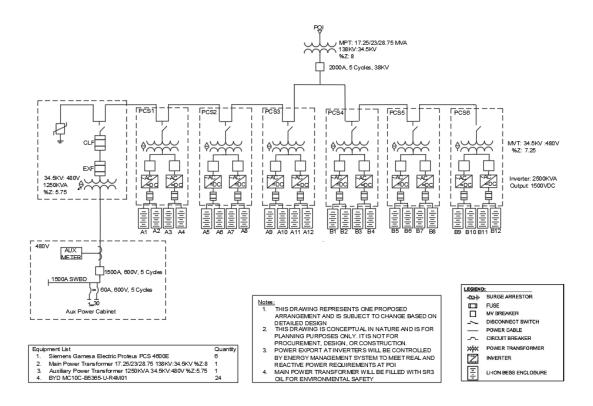
	Faulted Bus			I	ault Curr	ent	Trip De	vice			Arc Flash	Incident	Working	
ID	Nom. kV	Equipment Type	Gap (mm)	Bolted F Bus	ault (kA) PD	PD Arc Fault (kA)	Source Trip Device ID	Trip (cycle)	Open (cycle)	FCT (cycle)	Boundary (ft)	Energy (cal/cm ²)	Distance (in)	Energy Level
Bus ID: 10	0.480	Other	13	28.604	0.384	0.311	Fuse24	1.70	0.00	1.70	1.6	1.3	18	Level A
Bus ID: 11	0.760	Other	13	47.047						120.00	13.1	38.0	18	Level E
Bus ID: 12	0.760	Other	13	47.060						120.00	13.1	38.0	18	Level E
Bus ID: 13	0.760	Other	13	47.071						120.00	13.1	38.0	18	Level E
Bus ID: 14	0.760	Other	13	47.069						120.00	13.1	38.0	18	Level E
Bus ID: 15	0.760	Other	13	47.057						120.00	13.1	38.0	18	Level E
Bus ID: 16	0.760	Other	13	47.044						120.00	13.1	38.0	18	Level E
Bus ID: 17	0.480	Other	13	26.945	0.361	0.294	Fuse24	1.78	0.00	1.78	1.6	1.3	18	Level A
Busl	0.480	Other	13	18.389	17.675	14.846	Aux Breaker	1.80	0.00	1.80	1.2	0.9	18	Level A
Bus3	0.480	Other	13	16.081	15.452	13.010	Aux Breaker	1.80	0.00	1.80	1.1	0.8	18	Level A
Bus15	0.480	Other	13	15.340	14.738	12.412	Aux Breaker	1.80	0.00	1.80	1.1	0.7	18	Level A
Bus16	0.480	Other	13	17.349	16.673	14.025	Aux Breaker	1.80	0.00	1.80	1.2	0.8	18	Level A
Bus21	0.480	Other	13	15.354	14.752	12.424	Aux Breaker	1.80	0.00	1.80	1.1	0.7	18	Level A
Bus22	0.480	Other	13	13.616	13.078	11.007	Aux Breaker	1.80	0.00	1.80	1.0	0.6	18	Level A
Bus23	0.480	Other	13	13.057	12.540	10.548	Aux Breaker	1.80	0.00	1.80	1.0	0.6	18	Level A
Bus24	0.480	Other	13	14.571	13.998	11.788	Aux Breaker	1.80	0.00	1.80	1.1	0.7	18	Level A
Bus33	0.480	Other	13	13.068	12.551	10.557	Aux Breaker	1.80	0.00	1.80	1.0	0.6	18	Level A
Bus34	0.480	Other	13	11.317	10.865	9.109	Aux Breaker	1.80	0.00	1.80	0.9	0.5	18	Level A
Bus35	0.480	Other	13	12.475	11.979	10.068	Aux Breaker	1.80	0.00	1.80	1.0	0.6	18	Level A
Bus36	0.480	Other	13	12.676	12.174	10.234	Aux Breaker	1.80	0.00	1.80	1.0	0.6	18	Level A
Bus37	0.480	Other	13	11.486	11.027	9.249	Aux Breaker	1.80	0.00	1.80	0.9	0.5	18	Level A
Bus38	0.480	Other	13	11.280	10.829	9.079	Aux Breaker	1.80	0.00	1.80	0.9	0.5	18	Level A
Bus39	0.480	Other	13	11.022	10.581	8.865	Aux Breaker	1.80	0.00	1.80	0.9	0.5	18	Level A
Bus40	0.480	Other	13	12.507	12.011	10.094	Aux Breaker	1.80	0.00	1.80	1.0	0.6	18	Level A
Bus54	0.480	Other	13	11.746	11.278	9.465	Aux Breaker	1.80	0.00	1.80	0.9	0.5	18	Level A
Bus61	0.480	Other	13	10.094	9.687	8.093	Aux Breaker	1.80	0.00	1.80	0.8	0.5	18	Level A
Bus63	0.480	Other	13	9.932	9.531	7.958	Aux Breaker	1.80	0.00	1.80	0.8	0.5	18	Level A
Bus64	0.480	Other	13	10.891	10.455	8.756	Aux Breaker	1.80	0.00	1.80	0.9	0.5	18	Level A
Bus65	0.480	Other	13	9.738	9.345	7.797	Aux Breaker	1.80	0.00	1.80	0.8	0.4	18	Level A
Bus66	0.480	Other	13	8.989	8.623	7.173	Aux Breaker	1.80	0.00	1.80	0.8	0.4	18	Level A
Bus67	0.480	Other	13	8.859	8.498	7.065	Aux Breaker	1.80	0.00	1.80	0.8	0.4	18	Level A
Bus69	0.480	Other	13	9.624	9.235	7.702	Aux Breaker	1.80	0.00	1.80	0.8	0.4	18	Level A

Medium Voltage 95% Power Factor

ID	kV	Location	Working Distance LL (in)	Total Energy (cal/cm ²)	AFB (ft-in)
Bus ID: 1	138	Bus Arc Fault	37.4	70.95	28'2"
Bus ID: 2	34.5	Bus Arc Fault	15	199.84	22'6"
Bus ID: 3	34.5	Bus Arc Fault	15	196.78	22'4"
Bus ID: 4	34.5	Bus Arc Fault	15	197.02	22'4"
Bus ID: 5	34.5	Bus Arc Fault	15	197.29	22'5"
Bus ID: 6	34.5	Bus Arc Fault	15	197.55	22'5"
Bus ID: 7	34.5	Bus Arc Fault	15	197.45	22'5"
Bus ID: 8	34.5	Bus Arc Fault	15	197.19	22'4"
Bus ID: 9	34.5	Bus Arc Fault	15	196.93	22'4"
Bus7	138	Bus Arc Fault	37.4	70.95	28'2"
Bus8	138	Bus Arc Fault	37.4	103.97	34'7"

	ETAP	
Project :		Engineer :
Location :		Date :
Contract # :		Serial # : ETAP-OTI
Filename : C:\Users\cdustin\OneDrive - Iowa State University	Ames_BESS\BACKUP\AMES	_BESS~~.oti

Energy Levels	Final FCT (sec)	FaultType	Total Ia" (kA)	Total lbf" (kA)
Level F	2	3-Phase	13.956	13.965
> Level G	2	3-Phase	5.218	5.222
> Level G	2	3-Phase	5.141	5.148
> Level G	2	3-Phase	5.147	5.153
> Level G	2	3-Phase	5.154	5.16
> Level G	2	3-Phase	5.16	5.166
> Level G	2	3-Phase	5.158	5.165
> Level G	2	3-Phase	5.151	5.158
> Level G	2	3-Phase	5.144	5.152
Level F	2	3-Phase	13.956	13.965
Level G	2	3-Phase	19.816	19.83


Medium Voltage 105% Power Factor

ID	kV	Working Distance LL (in)	Total Energy (cal/cm ²)	AFB (ft-in)	Energy Levels
Bus ID: 1	138	37.4	79.01	29'10"	Level F
Bus ID: 2	34.5	15	220.6	23'9"	> Level G
Bus ID: 3	34.5	15	217.31	23'7"	> Level G
Bus ID: 4	34.5	15	217.49	23'7"	> Level G
Bus ID: 5	34.5	15	217.84	23'7"	> Level G
Bus ID: 6	34.5	15	218.11	23'7"	> Level G
Bus ID: 7	34.5	15	218.02	23'7"	> Level G
Bus ID: 8	34.5	15	217.74	23'7"	> Level G
Bus ID: 9	34.5	15	217.46	23'7"	> Level G
Bus7	138	37.4	79.01	29'10"	Level F
Bus8	138	37.4	116.2	36'9"	Level G

	ETAP	
Project :		Engineer :
Location :		Date :
Contract # :		Serial # : ETAP-OTI
Filename : C:\Users\cdustin\OneDrive - Iowa State University	Ames_BESS\BACKUP\AMES_	_BESS~~.oti

Final FCT (sec)	FaultType	Total Ia" (kA)	Total Ibf" (kA)	Output Rpt.	Configuration
2	3-Phase	15.416	15.427	MV ArcF 105	Normal
2	3-Phase	5.738	5.744	MV ArcF 105	Normal
2	3-Phase	5.656	5.662	MV ArcF 105	Normal
2	3-Phase	5.661	5.668	MV ArcF 105	Normal
2	3-Phase	5.669	5.675	MV ArcF 105	Normal
2	3-Phase	5.676	5.682	MV ArcF 105	Normal
2	3-Phase	5.674	5.681	MV ArcF 105	Normal
2	3-Phase	5.667	5.674	MV ArcF 105	Normal
2	3-Phase	5.66	5.667	MV ArcF 105	Normal
2	3-Phase	15.416	15.427	MV ArcF 105	Normal
2	3-Phase	21.903	21.918	MV ArcF 105	Normal

Appendix D: One-line diagram from AutoCAD

Appendix E: Input Data

Gamesa Electric Proteus Inverter Datasheet

		Proteus PCS-E Battery Inverters				
		Gamesa Electric		Gamesa Electric	Gamesa Electric	Gamesa Electric
		Proteus PCS 4	180E Proteus PCS 4360E	Proteus PCS 4600E	Proteus PCS 4910E	Proteus PCS 5150
DC Input						
DC Minimum Voltage for grid ti	ed mode ⁽¹⁾	976 V	1018 V	1075 V	1146 V	1202 V
DC Maximum Voltage		1500 V				
Number of Independent Power	Modules per PCS	2, not galvanically isolated				
Max. DC Current		2 x 2227 A				
Number of Fused DC Inputs pe	er Power Module/Total ^[2]	Up to 3+ & 3- / 6+ & 6-				
Max. DC short-circuit withstan		2 x 250kA, 3ms Double DC bus conf	iguration			
	,,,	1 x 250kA, 3ms Single DC bus confi				
AC Output						
Number of Phases		Three-phase w/o neutral point				
Nominal AC Power Total @25°C		4446 kVA	4639 kVA	4897 kVA	5219 kVA	5477 kVA
Nominal AC Power Total @40°C		4183 kVA	4365 kVA	4607 kVA	4910 kVA	5153 kVA
Nominal AC Power Total @40°C	C [104°F], 1300VDC	4541 kVA	4739 kVA	5002 kVA	5331 kVA	5595 kVA
Nominal AC Voltage ⁽²⁾		690 Vrms	720 Vrms	760 Vrms	810 Vrms	850 Vrms
Nominal Voltage Allowance Ra	nge®	+/-10%				
Frequency Range ⁽²⁾		47.5-53 Hz // 57-63 Hz				
THD of AC Current		<1% @Sn				
Power Factor Range ⁽²⁾		0 (lagging) - 1- 0 (leading)				
Performance		00.00%				
Efficiency		99,00%				
Stand-by Power Consumption		< 200 W				
General Data						
Temperature Range - Operation		-20°C / +60°C [-4°F / +140°F]				
Maximum Altitude ⁽⁴⁾	1	< 2,000 m [6,561 ft] (w/o derating)				
Cooling System		Liquid & forced air				
Relative Humidity		4% - 100% (w/o condensation)				
Seismic ⁽²⁾		Zone 4 IBC 2012				
Max. wind speed ⁽²⁾		288 km/h (179 mph)				
Snow load ⁽²⁾		2,5 kN/m ²				
Protection Class		IP55 class 1, NEMA3R				
Dimensions (W/H/D)		4,325 x 2,255 x 1,022 mm [170.3"	x 88.5" x 40.2"]			
Weight		4,535 kg [10,000 lb]				
AC Protections						
AC Side Disconnection & Short	t-circuit Current Protection	Two motorized AC circuit breakers	 one per each power module 			
AC Overvoltage Protection		Type 1 + 2 SPD				
Anti-islanding		Included (SW)				
Grid Voltage Fluctuations (LVR)	T, HVRT)의	Included (SW)				
Frequency Failure		Included (SW)				
DC Protections						
DC Disconnections		Two motorized DC switches (on-loa	ad) - one per each power modu	e		
DC Short-circuit Protection		DC fast fuses (optional)				
DC Over-voltage Protection		Type 1 + 2 SPD				
Reverse Polarity Detection		Included				
DC Ground Fault and Insulation	Detection	Included				
Other Protections						
Over-temperature Protection		Included				
Emergency Push Button		Included				
emagency rubit buttoff						
Communications						
Control ⁽²⁾		Modbus TCP/IP				
		Modbus TCP/IP				
Monitoring		Included				
Monitoring ⁽²⁾ Webserver						nominal AC voltage.
Webserver					(1) At I	iominal AG voltage.
Webserver Optionals	30°C [-22°F]				Co	nsult Gamesa Electric fo
Webserver Optionals Low Temperature Kit to up to	30°C [-22°F]				Col	nsult Gamesa Electric fo er options
Webserver Optionals Low Temperature Kit to up to - Factory-fitted DC fuses	30°C [-22°F]				Co oth	nsult Gamesa Electric fo er options nsult Gamesa Electric fo
Webserver Optionals Low Temperature Kit to up to - Factory-fitted DC fuses Factory-fitted joint DC inputs					Co oth © Co a e	nsult Gamesa Electric fo er options nsult Gamesa Electric fo specific configuration
Webserver Optionals Low Temperature Kit to up to - Factory-fitted DC fuses					Co oth @ Co a e @ Co	nsult Gamesa Electric fo er options nsult Gamesa Electric fo specific configuration nsult P-Q chart
Webserver Optionals Low Temperature Kit to up to - Factory-fitted DC fuses Factory-fitted joint DC inputs Enhanced corrosion protection					Co oth a e © Co a e © Co	Insult Gamesa Electric for er options Insult Gamesa Electric for specific configuration Insult P-Q chart to 4,000m [13,123 ft]
Webserver Optionals Low Temperature Kit to up to - Factory-fitted DC fuses Factory-fitted joint DC inputs Enhanced corrosion protection Standards/Directives®					Co oth a e P Co I Up Witt W Co	Isult Gamesa Electric fo er options Isult Gamesa Electric fo specific configuration Isult P-Q chart to 4,000m [13,123 ft] o derating as optional Isult Gamesa Electric fo
Webserver Optionals Low Temperature Kit to up to - Factory-fitted DC fuses Factory-fitted joint DC inputs Enhanced corrosion protection Standards/Directives ^{III} IEC 68108-1	IEC 62920	IEC 60529	NEC 2020		Co oth a e P Co I Up Witt W Co	nsult Gamesa Electric for er options nsult Gamesa Electric for specific configuration ssult P-Q chart to 4,000m [13,123 ft] in derating as optional
Webserver Optionals Low Temperature Kit to up to - Factory-fitted DC fuses Factory-fitted Joint DC inputs Enhanced corrosion protection Standards/Directives [®] IEC 62109-1 IEC 62109-2	IEC 62920 UL 62109-1	IEC 61727	CEA 2007		Co oth a e P Co I Up Witt W Co	Isult Gamesa Electric fo er options Insult Gamesa Electric fo specific configuration Isult P-Q chart to 4,000m [13,123 ft] or derating as optional Insult Gamesa Electric fo
Webserver Optionals Low Temperature KII to up to - Factory-fitted DC fuses Factory-fitted joint DC inputs Enhanced corrosion protection Standarda/Directives® IEC & 2109-1 IEC & 2109-2 IEC & 1020-8-2/4	IEC 62920 UL 62106-1 IEC 62116	IEC 61727 NTS 631 v1.1 SENP, v2.1 SEPE	CEA 2007 Rule 14, Rule 21		Co oth a e P Co I Up Witt W Co	Isult Gamesa Electric fo er options Isult Gamesa Electric fo specific configuration Isult P-Q chart to 4,000m [13,123 ft] o derating as optional Isult Gamesa Electric fo
Webserver Optionals Low Temperature Kit to up to - Factory-fitted DC fuses Enhanced corrosion protection Standards/Directives ^(R) IEC 62109-1 IEC 62109-2	IEC 62920 UL 62109-1	IEC 61727	CEA 2007		Co oth a e P Co I Up Witt W Co	Isult Gamesa Electric fo er options Insult Gamesa Electric fo specific configuration Isult P-Q chart to 4,000m [13,123 ft] or derating as optional Insult Gamesa Electric fo

GamesaElectric Shaping New Energy

System Type	MC10C-B5365-U-R4M01	MC10C-B4659-U-R2M01
DC Data		
Cell type	LFP	LFP
Pack type	1P416S	1P416S
System configuration	10 × 1P416S	10 × 1P416S
Battery capacity (BOL)	5365kWh	4659kWh
DC usable energy (BOL)@FAT	5099kWh	4382kWh
DC usable energy (BOL)@SAT	4946kWh	4251kWh
Battery voltage range	1081.6 ~ 1497.6	1081.6 ~ 1497.6
Nominal power	1236kW	2125kW
General Data		
Dimensions (W×D×H)	6058×2438×2896mm	6058×2438×2896mm
Weight	≤42252kg	≤42252kg
IP rating	IP55	IP55
Ambient operating temperature range	-30°C ~ +55°C [1]	-30°C ~ +55°C [1]
Relative humidity	5% ~ 100%	5% ~ 100%
Max. working altitude	< 2000m [2]	< 2000m [2]
Cooling concept	Smart air cooling	Liquid cooling
Noise	≤75dBA	≤75dBA
Fire suppression system	With fire alarm system (Aerosol)	With fire alarm system (Aerosol
Auxiliary power interface	AC480V/60Hz, 3 Phase 4 wire	AC480V/60Hz, 3 Phase 4 wire
Auxiliary system peak power requirement @45°C, PF0.8	38kVA	75kVA
Communication interfaces	Ethernet	Ethernet
Communication protocols	Modbus TCP/IP	Modbus TCP/IP
Standard color	RAL 9003	RAL 9003
Compliance	UN3536, UL9540A, UL9540	

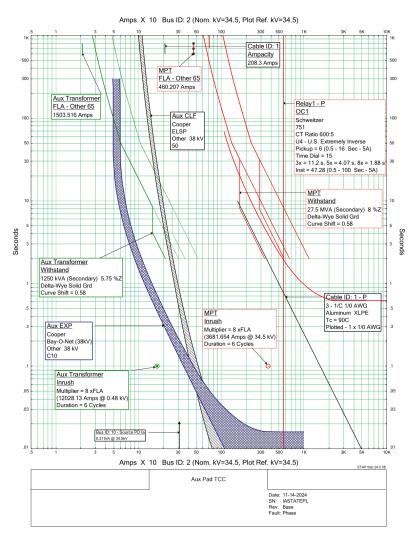
System Parameter

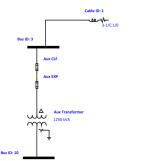
Note:

[1] Power derating is performed when the ambient temperature is below -15°C or above +45°C

[2] Power derating is performed when the altitude is between 2000-3000m.

©BYD AUTO Industry Company Limited. All rights reserved. Subject to change without notice. V1.1 2022-10-28

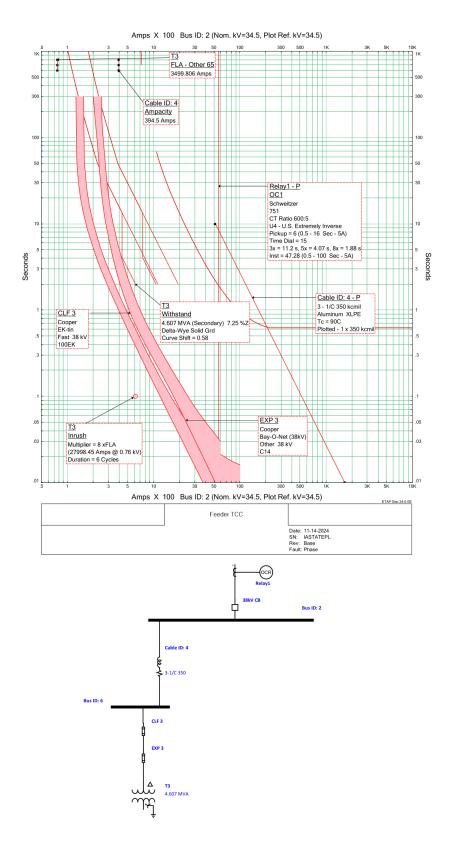

Cable Schedule


CableID	Currentflow	From	То	Description	ConductorSize	Length	Conductors per phase Qty	Raceway Length
	1 20.918 A	Surge Arrestor	PCS1	Fuse/SurgeArrestor	1/0	45.57 ft	1	3 29.57 ft
	2 98.016 A	PCS1	PCS2	inveter cable	1/0	53.02 ft	1	3 37.02 ft
	3 175.112 A	PCS2	PCS3	inverter cable	3/0	53.02 ft	1	3 37.02 ft
	4 252.209 A	PCS3	Substation Breaker	HomeRun 1	350 kcmil	563.99 ft	1	3 547.99 ft
	5 231.291 A	Substaion Breaker	PCS 4	HomeRun 2	350 kcmil	572.05 ft	1	3 556.05 ft
	6 154.194 A	PCS4	PCS5	PCS4	2/0	53.02 ft	1	3 37.02 ft
	7 77.097 A	PCS5	PCS6	PCS5	1/0	53.02 ft	1	3 37.02 ft
	8 1274A	Inverter	Battery B12	DC Battery B12	500 Kcmil	30.86 ft	4	4 16.86 ft
	9 1274A	Inverter	Battery B11	DC Battery B11	500 Kcmil	74.19 ft	4	4 60.19 ft
	10 1274A	Inverter	Battery B10	DC Battery B10	500 Kcmil	72.62 ft	4	4 58.62 ft
	11 1274A	Inverter	Battery B09	DC Battery B09	500 Kcmil	24.03 ft	4	4 10.03 ft
	12 1274A	Inverter	Battery B08	DC Battery B08	500 Kcmil	30.86 ft	4	4 16.86 ft
	13 1274A	Inverter	Battery B07	DC Battery B07	500 Kcmil	74.19 ft	4	4 60.19 ft
	14 1274A	Inverter	Battery B06	DC Battery B06	500 Kcmil	72.62 ft	4	4 58.62 ft
	15 1274A	Inverter	Battery B05	DC Battery B05	500 Kcmil	24.03 ft	4	4 10.03 ft
	16 1274A	Inverter	Battery B04	DC Battery B04	500 Kcmil	30.86 ft	4	4 16.86 ft
	17 1274A	Inverter	Battery B03	DC battery B03	500 Kcmil	74.19 ft	4	4 60.19 ft
	18 1274A	Inverter	Battery B02	DC Battery B02	500 Kcmil	72.62 ft	4	4 58.62 ft
	19 1274A	Inverter	Battery B01	DC Battery B01	500 Kcmil	24.03 ft	4	4 10.03 ft
	20 1274A	Inverter	Battery A12	DC Battery A12	500 Kcmil	30.86 ft	4	4 16.86 ft
	21 1274A	Inverter	Battery A11	DC Battery A11	500 Kcmil	74.19 ft	4	4 60.19 ft
	22 1274A	Inverter	Battery A10	DC Battery A10	500 Kcmil	72.62 ft	4	4 58.62 ft
	23 1274A	Inverter	Battery A09	DC Battery A09	500 Kcmil	24.03 ft	4	4 10.03 ft
	24 1274A	Inverter	Battery A08	DC Battery A08	500 Kcmil	30.86 ft	4	4 16.86 ft
	25 1274A	Inverter	Battery A07	DC Battery A07	500 Kcmil	74.19 ft	4	4 60.19 ft
	26 1274A	Inverter	Battery A06	DC Battery A06	500 Kcmil	72.62 ft	4	4 58.62 ft
	27 1274A	Inverter	Battery A05	DC Battery A05	500 Kcmil	24.03 ft	4	4 10.03 ft
	28 1274A	Inverter	Battery A04	DC Battery A04	500 Kcmil	30.86 ft	4	4 16.86 ft
	29 1274A	Inverter	Battery A03	DC Battery A03	500 Kcmil	74.19 ft	4	4 60.19 ft
	30 1274A	Inverter	Battery A02	DC Battery A02	500 Kcmil	72.62 ft	4	4 58.62 ft
	31 1274A	Inverter	Battery A01	DC Battery A01	500 Kcmil	24.03 ft	4	4 10.03 ft
	32 1820A	Aux Transformer	AuxEquipmentpad	Auxilary Equipment pad	1000 Kcmil	40 ft	4	4 10.03 ft
	33 54.84A			Aux Power Cabinet C1	1/0	4011	4	1
		Aux Cable C1	Battery A01	Aux Power Cabinet C1	1/0 1/0		4	1
	34 54.84A 35 54.84A	Aux Cable C2 Aux Cable C3	Battery A02	Aux Power Cabinet C2	1/0		1	1
			Battery A03		1/0		1	1
	36 54.84A	Aux Cable C4	Battery A04	Aux Power Cabinet C4	1/0 1/0		1	
	37 54.84A	Aux Cable C6	Battery A05	Aux Power Cabinet C6	1/0 1/0		-	1
	38 54.84A	Aux Cable C7	Battery A06	Aux Power Cabinet C7	1/0 1/0		1	1
	39 54.84A	Aux Cable C8	Battery A07	Aux Power Cabinet C8	1/0 F 1/0		1	1
	40 54.84A	Aux Cable C9	Battery A08	Aux Power Cabinet C9			1	1
	41 54.84A	Aux Cable C11	Battery A09	Aux Power Cabinet C11	1/0 1/0		1	1
	42 54.84A	Aux Cable C12	Battery A10	Aux Power Cabinet C12	1/0 1/0		1	1
	43 54.84A	Aux Cable C13	Battery A11	Aux Power Cabinet C13	1/0 1/0		1	1
	44 54.84A	Aux Cable C14	Battery A12	Aux Power Cabinet C14			1	1
	45 54.84A	Aux Cable C16	Battery B01	Aux Power Cabinet C15	1/0		1	1
	46 54.84A	Aux Cable C17	Battery B02	Aux Power Cabinet C17	1/0		1	1
	47 54.84A	Aux Cable C18	Battery B03	Aux Power Cabinet C18	1/0		1	1
	48 54.84A	Aux Cable C19	Battery B04	Aux Power Cabinet C19	1/0		1	1
	49 54.84A	Aux Cable C21	Battery B05	Aux Power Cabinet C21	1/0		1	1
	50 54.84A	Aux Cable C22	Battery B06	Aux Power Cabinet C22	1/0		1	1
	51 54.84A	Aux Cable C23	Battery B07	Aux Power Cabinet C23	1/0		1	1
	52 54.84A	Aux Cable C24	Battery B08	Aux Power Cabinet C24	1/0		1	1
	53 54.84A	Aux Cable C26	Battery B09	Aux Power Cabinet C26	1/0		1	1
	54 54.84A	Aux Cable C27	Battery B10	Aux Power Cabinet C27	1/0		1	1
	55 54.84A	Aux Cable C28	Battery B11	Aux Power Cabinet C28	1/0		1	1
	56 54.84A	Aux Cable C29	Battery B12	Aux Power Cabinet C29	1 /0		1	1

Appendix F: TCC Graphs

Phase and ground for aux and feeder

AUX Pad



44

Feeder to PCS Skid

45